[1]
|
G. F. Birkenmeier, J. Y. Kim and J. K. Park, “Principally Quasi-Baer Rings,” Communications in Algebra, Vol. 29, No. 2, 2001, pp. 639-660. http://dx.doi.org/10.1081/AGB-100001530
|
[2]
|
G. F. Birkenmeier, H. E. Heatherly, J. Y. Kim and J. K. Park, “Triangular Matrix Representations,” Journal of Algebra, Vol. 230, No. 2, 2000, pp. 558-595. http://dx.doi.org/10.1006/jabr.2000.8328
|
[3]
|
G. F. Birkenmeier, J. Y. Kim and J. K. Park, “Quasi-Baer Ring Extensions and Biregular Rings,” Bulletin of the Australian Mathematical Society, Vol. 61, No. 1, pp. 39-52.
|
[4]
|
G. F. Birkenmeier, J. Y. Kim and J. K. Park, “A Sheaf Representation of Quasi-Baer Rings,” Journal of Pure and Applied Algebra, Vol. 146, No. 3, 2000, pp. 209-223. http://dx.doi.org/10.1016/S0022-4049(99)00164-4
|
[5]
|
G. F. Birkenmeier and J. K. Park, “Triangular Matrix Representations of Ring Extensions,” Journal of Algebra, Vol. 265, No. 2, 2003, pp. 457-477. http://dx.doi.org/10.1016/S0021-8693(03)00155-8
|
[6]
|
G. F. Birkenmeier, J. Y. Kim and J. K. Park, “Polynomial Extensions of Baer and Quasi-Baer Rings,” Journal of Pure and Applied, Vol. 159, No. 1, 2001, pp. 25-42. http://dx.doi.org/10.1016/S0022-4049(00)00055-4
|
[7]
|
W. E. Clark, “Twisted Matrix Units Semigroup Algebras,” Duke Mathematical Journal, Vol. 34, No. 3, 1967, pp. 417-423. http://dx.doi.org/10.1215/S0012-7094-67-03446-1
|
[8]
|
A. Pollingher and A. Zaks, “On Baer and Quasi-Baer Rings,” Duke Mathematical Journal, Vol. 37, No. 1, 1970, pp. 127-138. http://dx.doi.org/10.1215/S0012-7094-70-03718-X
|
[9]
|
G. F. Birkenmeier, “Idempotents and Completely Semiprime Ideals,” Communications in Algebra, Vol. 11, No. 6, 1983, pp. 567-580. http://dx.doi.org/10.1080/00927878308822865
|
[10]
|
T. Y. Lam, “Lectures on Modules and Rings,” Springer, Berlin, 1998.
|
[11]
|
J. W. Fisher and S. Montgomery, “Semiprime Skew Group Rings,” Journal of Algebra, Vol. 52, No. 1, 1978, pp. 241-247. http://dx.doi.org/10.1016/0021-8693(78)90272-7
|
[12]
|
S. Montgomery, “Outer Automorphisms of Semi-Prime Rings,” Journal London Mathematical Society, Vol. 18, No. 2, 1978, pp. 209-220. http://dx.doi.org/10.1112/jlms/s2-18.2.209
|
[13]
|
K. Louden, “Maximal Quotient Rings of Ring Extensions,” Pacific Journal of Mathematics, Vol. 62, 1976, pp. 489-496.
|
[14]
|
J. Osterburg and J. K. Park, “Morita Contexts and Quotient Rings of Fixed Rings,” Houston Journal of Mathematics, Vol. 10, 1984, pp. 75-80.
|
[15]
|
G. F. Birkenmeier, J. K. Park and S. T. Rizvi, “Principally Quasi-Baer Ring Hulls: in Advances in Ring Theory,” In: D. V. Huynh and S. R. López-Permouth, Tends in Math., Birkhauser, Boston, 2010, pp. 47-61. http://dx.doi.org/10.1007/978-3-0346-0286-0_4
|
[16]
|
H. L. Jin, J. Doh and J. K. Park, “Group Actions on Quasi-Baer Rings,” Canadian Mathematical Bulletin, Vol. 52, 2009, pp. 564-582. http://dx.doi.org/10.4153/CMB-2009-057-6
|
[17]
|
G. F. Birkenmeier, J. K. Park and S. T. Rizvi, “Hulls of Semiprime Rings with Applications to C* Algebras,” Journal of Algebra, Vol. 322, No. 2, 2009, pp. 327-352. http://dx.doi.org/10.1016/j.jalgebra.2009.03.036
|
[18]
|
G. F. Birkenmeier, J. K. Park and S. T. Rizvi, “The Structure of Rings of Quotients,” Journal of Algebra, Vol. 321, No. 9, 2009, pp. 2545-2566. http://dx.doi.org/10.1016/j.jalgebra.2009.02.013
|