Thermal stability of proteins in the presence of aprotic ionic liquids
Hidetaka Noritomi, Ken Minamisawa, Reo Kamiya, Satoru Kato
DOI: 10.4236/jbise.2011.42013   PDF    HTML     6,616 Downloads   13,687 Views   Citations


Thermal stability of lysozyme dissolved in aqueous solutions was examined in the presence of water-miscible aprotic ionic liquids consisting of 1-ethyl-3-methylimidazolium cation and several kinds of anions. Addition of ionic liquids to an aqueous solution containing lysozyme prevented unfolded proteins from aggregating irreversibly at high temperatures. The thermal denaturation curve of lysozyme with ionic liquids was entirely shifted to higher temperature, compared with that without ionic liquids. The remaining activity of lysozyme after the heat treatment was markedly dependent upon the kind and concentration of ionic liquids. The remaining activi-ties of lysozyme with 1.5 M 1-ethyl-3-methylimida-zolium tetrafluoroborate ([emim][BF4]) and 0.1 M 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ([emim][Tf]) exhibited 88 and 68% after the heat treatment at 90oC for 30 min, respectively, although that without ionic liquids was perfectly lost.

Share and Cite:

Noritomi, H. , Minamisawa, K. , Kamiya, R. and Kato, S. (2011) Thermal stability of proteins in the presence of aprotic ionic liquids. Journal of Biomedical Science and Engineering, 4, 94-99. doi: 10.4236/jbise.2011.42013.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Volkin, D.B. and Klibanov, A.M. (1989) Minimizing protein inactivation, in T.E. Creighton Ed., Protein Function: Practical Approach, 1-24, IRL Press, Oxford.
[2] Klibanov, A.M. (1983) Stabilization of enzymes against thermal inactivation. Advances in Applied Microbiology, 29, 1-28. doi:10.1016/S0065-2164(08)70352-6
[3] Illanes, A. (1999) Stability of biocatalysts. Electronic Journal of Biotechnology, 2, 1-9.
[4] Gerlsma, S.Y. (1968) Reversible denaturation of ribonuclease in aqueous solutions as influenced by polyhydric alcohols and some other additives. Journal of Biological Chemistry, 243, 957-961.
[5] Kaushik, J.K. and Bhat, R. (1998) Thermal stability of proteins in aqueous polyol solutions: Role of the surface tension of water in the stabilizing effect of polyols. Journal of Biological Chemistry. B, 102, 7058-7066.
[6] Back, J.F., Oakenfull, D. and Smith, M.B. (1979) Increased thermal stability of proteins in the presence of sugars and polyols. Biochemistry, 18, 5191-5196. doi:10.1021/bi00590a025
[7] Lee, J.C. and Timasheff, S.N. (1981) The stabilization of proteins by sucrose. Journal of Biological Chemistry, 256, 7193-7201.
[8] Santoro, M.M., Liu, Y., Khan, S.M.A., Hou, L.-X. and Bolen, D.W. (1992) Increased thermal stability of proteins in the presence of naturally occurring osmolytes. Biochemistry, 31, 5278-5283. doi:10.1021/bi00138a006
[9] Yancey, P.H., Clark, M.E., Hand, S.C., Bowlus, R.D. and Somero, G.N. (1982) Living with water stress: evolution of osmolyte systems. Science, 217, 1214-1222. doi:10.1126/science.7112124
[10] Arakawa, T., Bhat, R. and Timasheff, S.N. (1990) Why preferential hydration does not always stabilize the native structure of globular proteins. Biochemistry, 29, 1924- 1931. doi:10.1021/bi00459a037
[11] Ikegaya, K. (2005) Kinetic analysis about the effects of neutral salts on the thermal stability of yeast alcohol dehydrogenase. Journal of Biochemistry, 137, 349. doi:10.1093/jb/mvi037
[12] Welton, T. (1999) Room-temperature ionic liquids. Solvents for synthesis and calalysis. Chemical Reviews, 99, 2071-2083. doi:10.1021/cr980032t
[13] Greaves, T.L. and Drummond, C.J. (2008) Protic ionic liquids: Properties and applications. Chemical Reviews, 108, 206-237. doi:10.1021/cr068040u
[14] Moniruzzaman, M., Nakashima, K., Kamiya, N. and Goto, M. (2010) Recent advances of enzymatic reactions in ionic liquids. Biochemical Engineering Journal, 48, 295-314. doi:10.1016/j.bej.2009.10.002
[15] Yang, Z. and Pan, W. (2005) Ionic liquids: Green solvents for nonaqueous biocatalysis. Enzyme and Microbial Technology, 37, 19-28. doi:10.1016/j.enzmictec.2005.02.014
[16] Jollès, P. (Ed.), (1996) Lysozymes: Model Enzymes in Biochemistry and Biology. Birkh?user Verlag, Basel.
[17] Ahern, T.J. and Klibanov, A.M. (1985) The mechanism of irreversible enzyme inactivation at 100℃. Science, 228, 1280-1284. doi:10.1126/science.4001942
[18] Nohara, D., Mizutani, A. and Sakai, T. (1999) Kinetic study on thermal denaturation of hen egg-white lysozyme involving precipitation. Journal of Bioscience and Bioengineering, 87, 199-205. doi:10.1016/S1389-1723(99)89013-6
[19] Lumry, R. and Eyring, H. (1954) Conformation changes of proteins. J. Physical Chemistry, 58, 110-120. doi:10.1021/j150512a005
[20] Zale, S.E. and Klibanov, A.M. (1983) On the role of reversible denaturation (unfolding) in the irreversible thermal inactivation of enzymes. Biotechnology & Bioengineering, 25, 2221-2230. doi:10.1002/bit.260250908
[21] Cioci, F. and Lavecchia, R. (1998) Thermostabilization of proteins by water-miscible additives. Chemical and Biochemical Engineering Quarterly, 12, 191-199.
[22] Noritomi, H., Nishida, S. and Kato, S. (2007) Protease-catalyzed esterification of amino acid in water-miscible ionic liquid. Biotechnology Letters, 29, 1509-1512. doi:10.1007/s10529-007-9416-4
[23] Noritomi, H., Suzuki, K., Kikuta, M. and Kato, S. (2009) Catalytic activity of α-chymotrypsin in enzymatic peptide synthesis in ionic liquids. Biochemical Engineering Journal, 47, 27-30. doi:10.1016/j.bej.2009.06.010
[24] Summers, C.A. and Fowers II, R.A. (2000) Protein renaturation by the liquid organic salt ethylammonium nitrate. Protein Science, 9, 2001-2008. doi:10.1110/ps.9.10.2001
[25] Mann, J.P., McCluskey, A. and Atkin, R. (2009) Activity and thermal stability of lysozyme in alkylammonium formate ionic liquids—Influence of cation modification. Green Chemistry, 11, 785-792. doi:10.1039/b900021f
[26] Ibara-Molero, B. and Sanchez-Ruiz, J.M. (1997) Are there equilibrium intermediate states in the urea-induced unfolding of hen egg-white lysozyme? Biochemistry, 36, 9616-9624. doi:10.1021/bi9703305
[27] Griko, Y.V., Freire, E., Privalov, G., Dael, H.V. and Privalov, P.L. (1995) The unfolding thermodynamics of c-type lysozyme—A calorimetric study of the heat denaturation of equine lysozyme. Journal of Molecular Biology, 252, 447-459. doi:10.1006/jmbi.1995.0510
[28] Privalov, P.L. and Khechinashvili, N.N. (1974) A thermodynamic approach to the problem of stabilization of globular protein structure. Journal of Molecular Biology, 86, 665-684. doi:10.1016/0022-2836(74)90188-0
[29] Khechinashvili, N.N., Privalov, P.L. and Tiktopulo, E.I. (1973) Calorimetric investigation of lysozyme thermal denaturation. FEBS Letter, 30, 57-60. doi:10.1016/0014-5793(73)80618-0
[30] Anfinsen, C.B. (1973) Principles that govern the folding of protein chains. Science, 181, 223-230. doi:10.1126/science.181.4096.223
[31] Rudolph, R. and Lilie, H. (1996) In vitro folding of inclusion body proteins. FASEB Journal, 10, 49-56.
[32] Byrne, N. and Angell, C.A. (2009) Formation and dissolution of hen egg white lysozyme amyloid fibrils in protic liquids. Chemistry Communications, 1046-1048. doi:10.1039/b817590j
[33] Lange, C., Patil, G. and Rudolph, R. (2005) Ionic liquids as refolding additives:N’-alkyl and N’-(ω-hydroxyalkyl) N-methylimidazolium chlorides. Protein Science, 14, 2693-2701. doi:10.1110/ps.051596605
[34] Zhao, H. (2005) Effect of ions and other compatible solutes on enzyme activity, and its implication for biocatalysis using ionic liquids. Journal of Molecular Catalysis, B: Enzymatic, 37, 16-25. doi:10.1016/j.molcatb.2005.08.007
[35] Von Hippel, P.H. and Schleich, T. (1969) The effects of neutral salts on the structure and conformational stability of macromolecules in solution. In: Timasheff, S.N. and Fasman, G.D., Eds., Structure and Stability of Biological Macromolecules, Marcel-Dekker, New York, 417-574.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.