A comparative analysis of entomoparasitic nematodes Heterorhabditis bacteriophora and Steinernema carpocapsae


Heterorhabditis bacteriophora and Steinernema carpocapsae are microscopic entomoparasitic nematodes (EPNs) that are attractive, organic alternatives for controlling a wide range of crop insect pests. EPNs evolved with parasitic adaptations that enable them to “feast” upon insect hosts. The infective juvenile, a non-feeding, developmentally arrested nematode stage, is destined to seek out insect hosts and initiates parasitism. After an insect host is located, EPNs enter the insect body through natural openings or by cuticle penetration. Upon access to the insect hemolymph, bacterial symbionts (Photorhabdus luminescens for H. bacteriophora and Xenorhabdus nematophila for S. carpocapsae) are regurgitated from the nematode gut and rapidly proliferate. During population growth, bacterial symbionts secrete numerous toxins and degradative enzymes that exterminate and bioconvert the host insect. During development and reproduction, EPNs obtain their nutrition by feeding upon both the bioconverted host and proliferated symbiont. Throughout the EPN life cycle, similar characteristics are seen. In general, EPNs are analogous to each other by the fact that their life cycle consists of five stages of development. Furthermore, reproduction is much more complex and varies between genera and species. In other words, infective juveniles of S. carpocapsae are destined to become males and females, whereas H. bacteriophora develop into hermaphrodites that produce subsequent generations of males and females. Other differences include insect host range, population growth rates, specificity of bacterial phase variants, etc. This review attempts to compare EPNs, their bacterial counterparts and symbiotic relationships for further enhancement of mass producing EPNs in liquid media.

Share and Cite:

Kooliyottil, R. , Upadhyay, D. , Inman III, F. , Mandjiny, S. and Holmes, L. (2013) A comparative analysis of entomoparasitic nematodes Heterorhabditis bacteriophora and Steinernema carpocapsae. Open Journal of Animal Sciences, 3, 326-333. doi: 10.4236/ojas.2013.34049.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Ehlers, R.U. (2001) Mass production of entomopathogenic nematodes for plant protection. Applied Microbiology and Biotechnology, 56, 623-633.
[2] Forst, S., Dowds, B., Boemare, N. and Stackebrandt, E. (1997) Xenorhabdus and Photorhabdus spp.: Bugs that kill bugs. Annual Reviews in Microbiology, 51, 47-72.
[3] ffrench-Constant, R., et al. (2003) Photorhabdus: Towards a functional genomic analysis of a symbiont and pathogen. FEMS Microbiology Reviews, 26, 433-456.
[4] Duchaud, E., et al. (2003) The genome sequence of the entomopathogenic bacterium Photorhabdus luminescens. Nature Biotechnology, 21, 1307-1313.
[5] Sicard, M., Le Brun, N., Pages, S., Godelle, B., Boemare, N. and Moulia, C. (2003) Effect of native Xenorhabdus on the fitness of their Steinernema hosts: Contrasting types of interaction. Parasitology Research, 91, 520-524.
[6] Poinar, G.O. and Thomas, G.M. (1966) Significance of Achromobacter nematophilus in the development of the nematode DD-136. Parasitology, 56, 385-390.
[7] Akhurst, R.J. (1982) Antibiotic activity of Xenorhabdus spp., bacteria symbiotically associated with insect pathogenic nematodes of the families Heterorhabditidae and Steinernematidae. Journal of General Microbiology, 128, 3061-3065.
[8] Boemare, N.E., Boyer-Giglio, M.H., Thaler, J.O., Akhurst, R.J. and Brehélin, M. (1992) Lysogeny and bacteriocinogeny in Xenorhabdus nematophilus and other Xenorhabdus spp. Applied and Environmental Microbiology, 58, 3032-3037.
[9] Maxwell, P.W., Chen, G.H., Webster, J.M. and Dunphy, G.B. (1994) Stability and activities of antibiotics produced during infection of the insect G. mellonella by two isolates of Xenorhabdus nematophilus. Applied and Environmental Microbiology, 60, 715-721.
[10] Thaler, J.O., Boyer-Giglio, M.H. and Boemare, N.E. (1997) New antimicrobial barriers produced by Xenorhabdus spp. and Photorhabdus spp. to secure the monoxenic development of entomopathogenic nematodes. Symbiosis, 22, 205-215.
[11] Bilgrami, A.L., Gaugler, R., Shapiro-Ilan, D. and Adams, B. (2006) Source of trait deterioration in entomopathogenic nematodes Heterorhabditis bacteriophora and Steinernema carpocapsae during in vivo culture. Nematology, 8, 397-409.
[12] Ehlers, R.U. (1996) Current and future use of nematodes in biocontrol: Practice and commercial aspects in regard to regulatory policies. Biocontrol Science and Technology, 6, 303-316. http://dx.doi.org/10.1080/09583159631299
[13] Kaya, H.K. and Gaugler, R. (1993) Entomopathogenic nematodes. Annual Reviews in Entomology, 38, 181-206.
[14] Georgis, R. and Gaugler, R. (1991) Predictability in biological control using entomopathogenic nematodes. Journal of Economic Entomology, 84, 713-720.
[15] Ehlers, R.U. (1992) Environmental and biotic factors influencing the control potential of entomopathogenic nematodes of the genus Steinernema and Heterorhabditis. In Nematology from Molecule to Ecosystem: Proceedings of the 2nd International Nematology Congress, Veldhoven, 11-17 August 1990, 201-212.
[16] Shapiro-Ilan, D.I. and Gaugler, R. (2002) Production technology for entomopathogenic nematodes and their bacterial symbionts. Journal of Industrial Microbiology and Biotechnology, 28, 137-146.
[17] Strauch, O., Stoessel, S. and Ehlers, R.U. (1994) Culture conditions define automictic or amphimictic reproduction in entomopathogenic rhabditid nematodes of the genus Heterorhabditis. Fundamental and Applied Entomology, 17, 575-582.
[18] de la Torre, M. (2003) Challenges for mass production of nematodes in submerged culture. Biotechnology Advances, 21, 407-416.
[19] Tabassum, K.A. and Shahina, F. (2004) In vitro mass rearing of different species of entomopathogenic nematodes in monoxenic solid culture. Pakistan Journal of Nematology, 22, 167-175.
[20] Shapiro-Ilan, D.I., Han, R. and Dolinksi, C. (2012) Entomopathogenic nematode production and application technology. Journal of Nematology, 44, 206-217.
[21] Inman III, F.L. and Holmes, L. (2012) Antibacterial screening of secreted compounds produced by the phase I variant of Photorhabdus luminescens. Indian Journal of Microbiology, 52, 708-709.
[22] Inman III, F.L. and Holmes, L. (2012) Effect of heat sterilization on the bioactivity of antibacterial metabolites secreted by Xenorhabdus nematophila. Pakistan Journal of Biological Sciences, 15, 997-1000.
[23] Strauch, O. and Ehlers, R.U. (1998) Food signal production of Photorhabdus luminescens inducing the recovery of entomopathogenic nematodes Heterorhabditis spp. in liquid culture. Applied Microbiology and Biotechnology, 50, 369-374. http://dx.doi.org/10.1007/s002530051306
[24] Han, R.C. and Ehlers, R.U. (2000) Pathogenicity, development and reproduction of Heterorhabditis bacteriophora and Steinernema carpocapsae under axenic in vivo conditions. Journal of Invertebrate Pathology, 75, 55-58.
[25] Wang, J. and Bedding, R.A. (1996) Population development of Heterorhabditis bacteriophora and Steinernema carpocapsae in the larvae of Galleria mellonella. Fundamental and Applied Nematology, 19, 363-367.
[26] Dix, I., Burnell, A.M., Griffin, C.T., Joyce, S.A., Nugent, M.J. and Downes, M.J. (1992) The identification of biological species in the genus Heterorhabditis (Nematoda: Heterorhabditidae) by cross-breeding second generation amphimictic adult. Parasitology, 104, 509-518.
[27] Dix, I., Koltai, H., Glazer, I. and Burnell, A.M. (1994) Sperm competition in mated first generation hermaphrodite females of the HP88 strain of Heterorhabditis (Nematoda: Heterorhabditidae) and progeny sex ratios in mated and unmated females. Fundamental and Applied Nematology, 17, 17-27.
[28] Johnigk, S.A. and Ehlers, R.U. (1999) Juvenile development and life cycle of Heterorhabditis bacteriophora and H. indica (Nematoda Heterorhabditidae). Nematology, 1, 251-260. http://dx.doi.org/10.1163/156854199508234
[29] Ayako, H., Ehlers, R.U. and Strauch, O. (2010) Life cycle and population development of the entomopathogenic nematodes Steinernema carpocapsae and S. feltiae (Nematoda, Rhabditida) in monoxenic liquid culture. Nematology, 12, 201-210.
[30] Neves, J.M., Teixeira, J.A., Simoes, N. and Mota, M. (2001) Effect of airflow rate on yield of Steinernema carpocapsae Az 20 in liquid culture in an external-loop airlift bioreactor. Biotechnology and Bioengineering, 72, 369-373.
[31] Ehlers, R.U., Lunau, S., Krasomil-Osterfeld, K. and Osterfeld, K.H. (1998) Liquid culture of the entomopathogenic nematode bacterium-complex Heterorhabditis megidis/Photorhabdus luminescens. Biocontrol, 1, 77-86.
[32] Ehlers, R.U., et al. (2000) Mass production potential of the bacto-helminthic biocontrol complex Heterorhabditis indica-Photorhabdus luminescens. Biocontrol Science and Technology, 10, 607-616.
[33] Jessen, P., Strauch, O., Wyss, U., Luttmann, R. and Ehlers, R.U. (2000) Carbon dioxide triggers dauer juvenile recovery of entomopathogenic nematodes (Heterorhabditis spp). Nematology, 2, 319-324.
[34] Yoo, S.K., Brown, I. and Gaugler, R. (2000) Liquid media development for Heterorhabditis bacteriophora: Lipid source and concentration. Applied Microbiology and Biotechnology, 54, 759-763.
[35] Aumann, J. and Ehlers, R.U. (2001) Physico-chemical properties and mode of action of a signal from the symbiotic bacterium Photorhabdus luminescens inducing dauer juvenile recovery in the entomopathogenic nematode Heterorhabditis bacteriophora. Nematology, 3, 849-853.
[36] Han, R.C. (1996) The effect of inoculum size on yield of Steinernema carpocapsae and Heterorhabditis bacteriophora in liquid culture. Nematologica, 42, 546-553. http://dx.doi.org/10.1163/004625996X00045
[37] Upadhyay, D., Kooliyottil, R., Mandjiny, S., Inman III, F.L. and Holmes, L.D. (2013) Mass production of the beneficial nematode Steinernema carpocapsae utilizing a fed-batch culturing process. eSci Journal of Plant Pathology, 2(1), 52-58.
[38] Inman III, F.L., Singh, S. and Holmes, L.D. (2012) Mass production of the beneficial nematode Heterorhabditis bacteriophora and its bacterial symbiont Photorhabdus luminescens. Indian Journal of Microbiology, 52(3), 316-324. http://dx.doi.org/10.1007/s12088-012-0270-2
[39] Akhurst, R.J. (1983) Neoaplectana species: Specificity of association with bacteria of the genus Xenorhabdus. Experimental Parasitology, 55, 258-263.
[40] Ehlers, R.D., Stoessel, S. and Whyss, U. (1990) The influence of phase variants of Xenorhabdus spp. and Escherichia coli (Enterobacteriaceae) on the propagation of entomopathogenic nematodes of the genera Steinernema and Heterorhabditis. Reviews in Nematology, 13, 417-424.
[41] Lunau, S., Stoessel, S., Schmidt-Peisker, A.J. and Ehlers, R.U. (1993) Establishment of monoxenic inocula for scaling up in vitro cultures of the entomopathogenic nematodes Steinernema spp. and Heterorhabditis spp. Nematologica, 39, 385-399.
[42] Fodor, E., et al. (1997) Composition and biophysical properties of lipids in Xenorhabdus nematophila and Photorhabdus luminescens, symbiotic bacteria associated with entomopathogenic nematodes. Applied and Environmental Microbiology, 63, 2826-2831.
[43] Akhurst, R.J. (1980) Morphological and functional dimorphism in Xenorhabdus spp. bacteria symbiotically associated with the insect pathogenic nematodes Neoaplectana and Heterorhabditis. Journal of General Microbiology, 121, 303-309.
[44] Akhurst, R.J., Boemare, N.E. and Mourant, R.G. (1990) DNA homology groups in the genus Xenorhabdus. Proceedings and abstracts of 5th International Colloquium on Invertebrate Pathology and Microbial Control, Adelaide, 20-24 August 1990, 220.
[45] Krasomil-Osterfield, K.C. (1995) Influence of osmolarity on phase shift in Photorhabdus luminescens. Applied and Environmental Microbiology, 61, 3748-3749.
[46] Couche, G.A. and Gregson, R.P. (1987) Protein inclusions produced by the entomopathogenic bacterium Xenorhabdus nematophilus subsp. nematophilus. Journal of Bacteriology, 169, 5279-5288.
[47] Couche, G.A., et al. (1987) Occurrence of intracellular inclusions and plasmids in Xenorhabdus spp. Journal of General Microbiology, 133, 967-973.
[48] Bowen, D.J. and Ensign, J.C. (2001) Isolation and characterization of protein inclusions produced by the entomopathogenic bacterium Photorhabdus luminescens. Applied and Environmental Microbiology, 67, 4834-4841.
[49] You, J., Liang, S., Cao, L., Liu, X. and Han, R. (2006) Nutritive significance of crystalline inclusion proteins of Photorhabdus luminescens in Steinernema nematodes. FEMS Microbiology Ecology, 55, 178-185.
[50] Bintrim, S.B. and Ensign, J.C. (1998) Insertional inactivation of genes encoding the crystalline inclusion proteins of Photorhabdus luminescens results in mutants with pleiotropic phenotypes. Journal of Bacteriology, 180, 1261-1269.
[51] Wang, Y., Bilgrami, A.L., Shapiro-Ilan, D. and Gaugler, R. (2007) Stability of entomopathogenic bacteria, Xenorhabdus nematophila and Photorhabdus luminescens, during in vitro culture. Journal of Industrial Microbiology and Biotechnology, 34, 73-81.
[52] Gaugler, R., Campbell, J.F. and McGuire, T.R. (1990) Fitness of a genetically improved entomopathogenic nematode. Journal of Invertebrate Pathology, 56, 106-116.
[53] Wang, X. and Grewal, P.S. (2002) Rapid genetic deterioration of environmental tolerance and reproductive potential of an entomopathogenic nematode during laboratory maintenance. Biological Control, 23, 71-78.
[54] Campbell, J.F. and Gaugler, R. (1993) Nictation behaviour and its ecological implications in the host search strategies of entomopathogenic nematodes (Heterorhabditidae and Steinernematidae). Behaviour, 126, 3-14.
[55] Grewal, P.S., Gaugler, R. and Wang, Y. (1994) Enhanced cold tolerance of the entomopathogenic nematode Steinernema feltiae through genetic selection. Annals of Applied Biology, 129, 335-341.
[56] O’Halloran, D.M. and Burnell, A.M. (2003) An investigation of chemotaxis in the insect parasitic nematode Heterorhabditis bacteriophora. Parasitology, 127, 375-385.
[57] Pye, A.E. and Burman, M. (1981) Neoaplectana carpocapsae: Nematode accumulations on chemical and bacterial gradients. Experimental Parasitology, 51, 13-20.
[58] Schmidt, J. and All, J.N. (1979) Attraction of Neoaplectana carpocapsae (Nematoda: Steinernematidae) to common excretory products of insects. Environmental Entomology, 8, 55-61.
[59] Campbell, J.F. and Kaya, H.K. (2000) Influence of insect-associated cues on the jumping behavior of entomopathogenic nematodes (Steinernema spp.). Behavior, 137, 591-609. http://dx.doi.org/10.1163/156853900502231
[60] Hallem, E.A., et al. (2011) A sensory code for host seeking in parasitic nematodes. Current Biology, 21, 377-383.
[61] Hallem, E.A., et al. (2010) Receptor-type guanylate cyclase is required for carbon dioxide sensation by Caenorhabditis elegans. Proceedings of the National Academy of Science of the United States of America, 108, 254-259. http://dx.doi.org/10.1073/pnas.1017354108
[62] Hirao, A. and Ehlers, R.U. (2010) Influence of inoculum density on population dynamics and dauer juvenile yields in liquid culture of biocontrol nematodes Steinernema carpocapsae and S. feltiae (Nematoda: Rhabditida). Applied Microbiology and Biotechnology, 85, 507-515.
[63] Johnigk, S.A., Ecke, F., Poehling, M. and Ehlers, R.U. (2004) Liquid culture mass production of biocontrol nematodes, Heterorhabditis bacteriophora (Nematoda: Rhabditida): Improved timing of dauer juvenile inoculation. Applied Microbiology and Biotechnology, 64, 651-658.
[64] Bowen, M., Co, D., Inman III, F.L. and Holmes, L. (2012) Microbial kinetics of Photorhabdus luminescens in glucose batch cultures. Explorations: The Journal of Undergraduate Research and Creative Activities for the State of North Carolina, 7, 14-22.
[65] Singh, S., Moreau, E., Inman III, F.L. and Holmes, L. (2012) Characterization of Photorhabdus luminescens growth for the rearing of the beneficial nematode Heterorhabditis bacteriophora. Indian Journal of Microbiology, 52, 325-331. http://dx.doi.org/10.1007/s12088-011-0238-7
[66] Inman III, F.L. and Holmes, L. (2012) The effects of trehalose on the bioluminescence and pigmentation of the phase I variant of Photorhabdus luminescens. Journal of Life Sciences, 6, 119-129.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.