[1]
|
L. Niemeyer, L. Pietronero and H. J. Wiesmann, "Fractal Dimension of Dielectric Breakdown", Physical Review Lett., Vol. 52, No. 12, 1984, pp. 1033-1036.
doi:0.1103/PhysRevLett.52.1033
|
[2]
|
S. P. Frankel (1950). Convergence rates of interactive treatments of partial differential equations. Mathematical Tables and Other Aids to Computation 4, pp. 65-75. doi:10.2307/2002770
|
[3]
|
P. Bak, C. Tang and K. Wiesenfeld 1987 Phys. Rev. Lett. 59.381-384
|
[4]
|
P. Bak, C. Tang and K. Wiesenfeld, “Self-organized Criticality,” Physical Review A, Vol. 38, 1988, pp. 364-374.doi:10.1103/PhysRevA.38.364
|
[5]
|
J. M. Cooper and G. C. Stevens, “The Influence of Physical Properties on Electrical Treeing in a Cross-linked Synthetic Resin,” Journal of Phys. D: Appl. Phys., Vol. 23, 1990, pp. 1528-1535.
|
[6]
|
H. J. Wiesmann and H. R. Zeller, “A Fractal Model of Dielectric Breakdown and Prebreakdown in Solid Dielectrics,” Journal of Applied Physics, Vol. 60, No. 5, 1986, pp. 1770-1773. doi:10.1063/1.337219
|
[7]
|
L. Kebbabi and A. Beroual, “Fractal Analysis of Creeping Discharge Patterns Propagating at Solid/liquid Interfaces: Influence of the Nature and Geometry of Solid Insulators,” Journal of the Physics D: Applied Physics, Vol. 39, 2006, pp. 177-183. doi:10.1088/0022-3727/39/1/026
|
[8]
|
P. Wlezek, A. Odgaard and M. Sernetz, “Fractal 3D Analysis of Blood Vessels and Bones,” Fractal Geometry and Computer Graphics, Springer-Verlag, Berlin, pp. 240-248, 1992.
|
[9]
|
K. Kudo, “Fractal Analysis of Electrical Trees,” IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 5 No. 5, October 1998, PP. 713-727. doi:10.1109/94.729694
|