Seed Vigor Variation of Agave durangensis Gentry (Agavaceae)
Gerardo Barriada-Bernal, Norma Almaraz-Abarca, Tzahyri Gallardo-Velázquez, Isabel Torres-Morán, Yolanda Herrera-Arrieta, Socorro González-Elizondo, Eli Amanda Delgado-Alvarado
1Interdisciplinary Research Center for the Integral Regional Development, Durango, National Polytechnical Institute (CIIDIR IPN Durango), Durango, México.
Interdisciplinary Research Center for the Integral Regional Development, Durango, National Polytechnical Institute (CIIDIR IPN Durango), Durango, México.
National School of Biological Sciences, National Polytechnical Institute (ENCB IPN), México DF, México.
University Center of Biological and Agropecuary Sciences, University of Guadalajara (CUCBA), Zapopan, México.
DOI: 10.4236/ajps.2013.411276   PDF    HTML     3,812 Downloads   6,179 Views   Citations


Agave durangensis propagates basically by seeds. This species is economically important because it supports a mescal industry in Durango, Mexico. At present, its exploitation is overall by collecting plants from the wild populations. In order to reduce the negative impact of the collection in the natural populations of A. durangensis and to improve the mescal industry, it is necessary to establish plantations with selected seeds for a high vigor. In this paper, the variation in morphological features, physiological behavior of germination, and biochemical indicators of seed vigor among three natural populations of A. durangensis was assessed. Variation was found in the seed weight (0.68 to 1.15 mg/seed), seed dimensions (3.51 × 5.29 to 4.62 × 5.92 mm), germinability reduction at 15°°C related to 25°C (4% to 51%), germination rate at 25°C (44.0 to 48.5 seeds/day) and at 15°C (5.17 to 6.77 seeds/day), development reduction at 15°C related to 25°C (86.66% to 91.99%), levels of seed accumulated phenols (71 to 85 μg/seed), antioxidant potential (42% to 50% reduction of DPPH*), seed alcohol dehydrogenase activity (ADH) (180 to 1100 μmol NAD+/mg protein/min), highest ADH activity after imbibitions at 25°C (310.24 to 520.2 μmol NAD+/mg protein/min), and highest ADH activity after imbibitions at 15°C (170.74 to 440.71 μmol NAD+/mg protein/min). The variation in the seed vigor was revealed by a principal component analysis (PCA) based on all the parameters evaluated. PCA clearly discriminated among the three populations.

Share and Cite:

G. Barriada-Bernal, N. Almaraz-Abarca, T. Gallardo-Velázquez, I. Torres-Morán, Y. Herrera-Arrieta, S. González-Elizondo and E. Delgado-Alvarado, "Seed Vigor Variation of Agave durangensis Gentry (Agavaceae)," American Journal of Plant Sciences, Vol. 4 No. 11, 2013, pp. 2227-2239. doi: 10.4236/ajps.2013.411276.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] J. A. ávila-Reyes, N. Almaraz-Abarca, E. A. Delgado-Alvarado, L. S. González-Valdez, G. Valencia-del Toro and E. Durán-Páramo, “Phenol Profile and Antioxidant Capacity of Mescal Aged in Oak Wood Barrels,” Food Research International, Vol. 43, No. 1, 2010, pp. 296-300.
[2] N. Almaraz-Abarca, V. Hernández-Vargas, I. Torres-Morán, A. Delgado-Alvarado, G. Orea-Lara, A. Cifuentes-Díaz de León, J. A. ávila-Reyes, J. Herrera-Corral, N. Uribe-Soto, R. Muñiz-Martínez and N. Naranjo-Jiménez, “Agave durangensis,” IPN-CONACYT, México DF, 2011.
[3] S. Talai and S. Sen-Mandi, “Seed Vigor-Related DNA Marker in Rice Shows Homology with Acetyl CoA Carboxylase Gene,” Acta Physiologiae Plantarum, Vol. 32, No. 1, 2010, pp. 153-167.
[4] M. Koornneef, L. Bentsink and H. Hilhorst, “Seed Dormancy and Germination,” Current Opinion in Plant Biology, Vol. 5, No. 1, 2002, pp. 33-36.
[5] M. B. McDonald, “The History of Seed Vigor Testing,” Journal of Seed Technology, Vol. 17, No. 2, 1994, pp. 93-101.
[6] O. Chloupek, P. Hrstková and D. Jurecka, “Tolerance of Barley Seed Germination to Cold-and Drought-Stress Expressed as Seed Vigour,” Plant Breeding, Vol. 112, No. 3, 2003, pp. 199-203.
[7] M. Yamauchi, A. Aguilar, D. Vaughan and D. Seshu, “Rice Germoplasm Suitable for Direct Sowing under Flooded Soil Surface,” Euphytica, Vol. 67, No. 3, 1993, pp. 177-184.
[8] D. J. Osborne, A. Dell’Aquila and R. H. Elder, “DNA Repair in Plant Cells. An Essential Event of Early Embryo Germination in Seeds,” Folia Biologica (Prague), Vol. 30, Special Issue, 1984, pp. 155-169.
[9] S. Shimomura and H. Beevers, “Alchohol Dehydrogenase and an Inactivator from Rice Seedlings,” Plant Physiology, Vol. 71, No. 4, 1983, pp. 736-741.
[10] H. Kato-Noguchi, “Ethanol Sensitivity of Rice and Oat Coleoptiles,” Physiologia Plantarum, Vol. 115, No. 1, 2002, pp. 119-124.
[11] C. Bailly, “Active Oxygen Species and Antioxidants in Seed Biology,” Seed Science Research, Vol. 14, No. 2, 2004, pp. 93-107.
[12] B. A. Cevallos-Casals and L. Cisneros-Zevallos, “Impact of Germination on Phenolic Content and Antioxidant Activity of 13 Edible Seeds Species,” Food Chemistry, Vol. 119, No. 4, 2010, pp. 1485-1490.
[13] C. E. Freeman, “Germination Responses of a New Mexico Population of Parry Agave (Agave parryi Engelm. var. parryi) to Constant Temperature, Water Stress, and pH,” The Southwestern Naturalist, Vol. 20, No. 1, 1975, pp. 69-74.
[14] L. G. Orea, A. Cifuentes-Díaz de León, O. S. Gómez and V. V Hernández, “Seed Germination (Agave durangensis) at different temperatures and Effect of Fertilization on the Plantet Development,” Vidsupra, Vol. 2, No. 1, 2009, pp. 16-21.
[15] H. M. Ramírez-Tobías, C. B. Peña-Valdivia, J. R. R. Aguirre, J. A. Reyes-Agüero, A. B. Sánchez-Urdaneta and S. G. Valle, “Seed Germination Temperatures of Eight Mexican Agave Species with Economic Importance,” Plant Species Biology, Vol. 27, No. 2, 2012, pp. 124-137.
[16] G. Funes, S. Díaz and P. Venier, “Temperature as Principal Determinative Factor of Germination in Species of Chaco Seco, Argentina,” Ecología Austral, Vol. 19, No. 2, 2009, pp. 129-138.
[17] M. K. Kettenring, G. Gardner and S. M. Galatowitsch, “Effects of Light on Seeds Germination of Eight Wetland Carex Species,” Annals of Botany, Vol. 98, No. 4, 2006, pp. 869-874.
[18] M. Sood and V. Thakur, “Effect of Light and Temperature on Germination Behavior of Aconitum deinorrhizum Stapf,” International Journal of Farm Sciences, Vol. 1, No. 2, 2011, pp. 83-87.
[19] J. D. Maguire, “Speed of Germination-Aid in Selection and Evaluation for Seedling Emergence and Vigor,” Crop Science, Vol. 2, No. 2, 1962, pp. 176-177.
[20] A. García and J. M. Lasa, “Test of Seed Vigor: Bibliographical Review,” Boletin 14 de la Estación Experimental Aula Dei, Zaragoza, 1991.
[21] M. R. S. Ardekani, M. Khanavi, M. Hajimahmoodi, M. Jahangiri and A. Hadjiakhoondi, “Comparison of Antioxidant Activity and Total Phenol Contents of Some Date Seed Varieties from Iran,” Iranian Journal of Pharmaceutical Research, Vol. 9, No. 2, 2010, pp. 141-146.
[22] H. Lozoya-Saldaña, R. Rivera-Hinojosa and M. T. Colinas-León, “Phenols, Peroxidase and Phenylalanine Ammonia-Lyase: Their Relationship to the Genetic Resisteance Against Late Blight (Phytophthora infestans Mont. De Bary) in Potato (Solanum tuberosum L.) Clones,” Agrociencia, Vol. 41, No. 4, 2007, pp. 479-489.
[23] M. Campos and K. Markham, “Structure Information from HPLC and On-Line Measured Absorption Spectra: Flavones, Flavonols and Phenolic Acids,” Coimbra University Press, Coimbra, 2007.
[24] T. J. Mabry, K. R. Markham and M. B. Thomas, “The Systematic Identification of Flavonoids,” Springer-Verlag, New York, 1970.
[25] M. G. Campos, P. A. Da Cunha, M. C. Navarro and M. P. Utrilla, “Free Radical Scavenger Activity of Bee Pollen,” 17th International Conference on Polyphenols, Palma de Mallorca, 1994, pp. 415-416.
[26] M. E. Rumpho and R. A. Kennedy, “Anaerobic Metabolism in Germinating Seeds of Echinochloa crus-galli (Barnyard Grass),” Plant Physiology, Vol. 68, No. 1, 1981, pp. 165-168.
[27] M. A. Schuler and R. E. Zielinski, “Methods in Plant Molecular Biology,” Academic Press, Millbrae, 1989.
[28] Ø. Hammer, D. A. T. Harper and P. D. Ryan, “PAST: Paleontological Statistics Software Package for Education and Data Analysis,” Paleontologia Electronica, Vol. 4, No. 1, 2001, p. 9.
[29] H. Gentry, “Agaves of Continental North America,” The University of Arizona Press, Tucson, 1982.
[30] M. G. Barbour, J. H. Burk, W. D. Pitts, F. S. Gilliam and M. W. Schwartz, “Terrestrial Plant Ecology,” Benjamin/ Cummings, San Francisco, 1999.
[31] H. Baker, “Seed Weight in Relation to Environmental Conditions,” Ecology, Vol. 53, No. 6, 1972, pp. 997-1010.
[32] N. Pesev, “Genetic Factors Affecting Maize Tolerance to Low Temperatures at Emergence and Germination,” Theoretical and Applied Genetics, Vol. 40, No. 12, 1970, pp. 351-356.
[33] P. S. Nobel, “Environmental Biology of Agaves and Cacti,” Cambridge University Press, New York, 2003.
[34] R. Austin and P. Longden, “The Effects of Nutritional Treatments of Seed-Bearing Plants on the Performance of Their Progeny,” Nature, Vol. 205, No. 4973, 1965, pp. 819-820.
[35] T. Philippi, “Bet-Hedging Germination of Desert Annuals: Beyond the First Year,” American Naturalist, Vol. 142, No. 3, 1993, pp. 474-487.
[36] G. F. Pérez and L. J. B. Martínez, “Introducción a la Fisiología Vegetal,” Mundi Prensa, Madrid, 1994.
[37] S. J. Martínez, J. V. Vargas, O. M. G. Peña and A. S. Romero, “Speed of Emergence of Inbred Maize Lines,” Revista Mexicana de Ciencias Agrícolas, Vol. 1, No. 3, 2010, pp. 289-304.
[38] H. Zhang, L. J. Irving, C. McGill, C. Matthew, D. Zhou and P. Kemp, “The Effects of Salinity and Osmotic Stress on the Germination of Two Barley Varieties: Sodium as an Osmotic Regulator,” Annals of Botany, Vol. 106, No. 6, 2010, pp. 1027-1035.
[39] M. Mercado and P. Fernández, “Enhancing Rice Seed Germinability and Vigor Through Hydration-Dehydration (HD) Technique,” Philippine Journal of Crop Science, Vol. 27, No. 1, 2002, pp. 13-24.
[40] T. Mostarin, S. R. Saha and K. Khatun, “Seed Quality of Bush Bean as Iinfluenced by Different Storage Containers and Conditions,” Journal of Experimental Biosciences, Vol. 3, No. 1, 2012, pp. 83-88.
[41] R. R. Sokht-Abandani and M. R. Ramezani, “The Physiological Effects on Some Ttraits of Osmopriming Germination of Maize (Zea mays L.), Rice (Oryza sativa L.) and Cucumber (Cucumis sativus L.),” International Journal of Biology, Vol. 4, No. 2, 2012, pp. 132-148.
[42] R. L. Hassell, R. J. Dufault and T. L. Phillips, “Influence of Temperature Gradients on Triploid and Diploid Watermelon Seed Germination,” HortTechnology, Vol. 11, No. 4, 2001, pp. 570-574.
[43] C. Bailly, A. Benamar, F. Corbineau and D. Côme, “Free Radical Scavenging as Affected by Accelerated Ageing and Subsequent Priming in Sunflower Seeds,” Physiologia Plantarum, Vol. 104, No. 4, 1998, pp. 646-652.
[44] S. Balesevic-Tubic, D. Malencic, M. Tatic and J. Miladinovic, “Influence of Ageing Process on Biochemical Changes in Sunflower Seed,” Helia, Vol. 28, No. 42, 2005, pp. 107-114.
[45] S. Nandi, S. Sen-Mandi and T. P. Sinha, “Active Oxygen and Their Scavengers in Rice Seeds (Oryza sativa cv. IET4094) Aged under Tropical Environmental Conditions,” Seed Science Research, Vol. 7, No. 3, 1997, pp. 253-260.
[46] U. M. N. Murthy, Y. Liang, P. P. Kumar and W. Sun, “Non-Enzymatic Protein Modification by the Maillard Reaction Reduces the Activities of Scavenging Enzymes in Vigna radiate,” Physiologia Plantarum, Vol. 115, No. 2, 2002, pp. 213-220.
[47] L. Lepiniec, I. Debeaujon, J. M. Routaboul, A. Baudry, L. Pourcel, N. Nesi and M. Caboche, “Genetics and Biochemistry of Seed Flavonoids,” Annual Review of Plant Physiology, Vol. 57, 2006, pp. 405-430.
[48] S. Pukacka and E. Ratajczak, “Age-Related Biochemical Changes during Storage of Beech (Fagus sylvatica L.) Seeds,” Seed Science Research, Vol. 17, No. 1, 2007, pp. 45-53.
[49] L. G. Barriada-Bernal, N. Almaraz-Abarca, E. A. Delgado-Alvarado, T. Gallardo-Velázquez, J. A. ávila-Reyes, M. I. Torrres-Morán, M. S. González-Elizondo and Y. Herrera-Arrieta, “Flavonoid Composition and Antioxidant Capacity of the Edible Flowers of Agave durangensis (Agavaceae),” CyTA-Journal of Food, Published online: 14 Jun 2013.
[50] F. Abderrahim, E. Huanatico, R. Repo-Carrasco-Valencia, S. M. Arribas, M. C. Gonzalez and L. Condezo-Hoyos, “Effect of Germination on Total Phenolic Compounds, Total Antioxidant Capacity, Maillard Reaction Products and Oxidative Stress Markers in Canihua (Chenopodium pallidicaule),” Journal of Cereal Science, Vol. 56, No. 2, 2012, pp. 410-417.
[51] Z. S. Siddiqui and M. A. Khan, “The Role of Seed Coat Phenolics on Water Uptake and Early Protein Synthesis during Germination of Dimorphic Seeds of Halopyrum mucronatum (L.) Staph,” Pakistan Journal of Botany, Vol. 42, No. 1, 2010, pp. 227-238.
[52] J. Bewley and M. Black, “Seeds: Physiology of Development and Germination,” Plenum Press, New York, 1994.
[53] D. Priestley, “Seed Ageing. Implications for Seed Storage and Persistence in the Soil,” Cornell University Press, Ithaca, 1986.
[54] M. C. Drew, “Oxygen Deficiency and Root Metabolism; Injury and Acclimation under Hypoxia and Anoxia,” Annual Review of Plant Physiology and Plan Molecular Biology, Vol. 48, 1997, pp. 223-250.
[55] D. Schwartz, “An Example of Gene Fixation Resulting from Selective Advantage in Suboptimal Conditions,” The American Naturalist, Vol. 103, No. 933, 1969, pp. 479-481.
[56] L. G. Labouriau, “Seed Germination as a Thermobiological Problem,” Radiation and Environmental Biophysics, Vol. 15, No. 4, 1978, pp. 345-366.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.