[1]
|
A. O. Ojomo, O. Omueti, J. A. Raji and O. Omueti, “Studies in Induced Mutation in Cowpea, 5. The Variation in Protein Content Following Ionizing Radiation,” Journal of Applied Science, Vol. 21, 1979, pp. 61-64.
|
[2]
|
Y. Takagi and T. Anai, “Development of Novel Fatty Acid Composition in Soybean Oil by Induced Mutation,” Oleoscience, Vol. 6, No. 4, 2006, pp. 195-203. http://dx.doi.org/10.5650/oleoscience.6.195
|
[3]
|
J. Mudibu, K. K. Nkongolo, M. Mehes-Smith and A. Kalonji-Mbuyi, “Genetic Analysis of a Soybean Genetic Pool Using ISSR Marker: Effect of Gamma Radiation on Genetic Variability,” International Journal of Plant Breeding and Genetics, Vol. 5, No. 3, 2011, pp. 235-245. http://dx.doi.org/10.3923/ijpbg.2011.235.245
|
[4]
|
J. Mudibu, K. K. Nkongolo, A. Kalonji-Mbuyi and R. Kizungu, “Effect of Gamma Irradiation on Morpho-Agronomic Characteristics of Soybeans (Glycine max L.),” American Journal of Plant Science, Vol. 3, No. 3, 2010, pp. 331-337. http://dx.doi.org/10.4236/ajps.2012.33039
|
[5]
|
R. Avila and B. R. Murty, “Cowpea and Mungbean Improvement by Mutation Induction,” Mutation Breeding Newsletter, Vol. 21, 1983, p. 9.
|
[6]
|
A. Micke, “Improvement of Grain Legume Production Using Induced Mutations,” International Atomic Energy Agency (IAEA), Pullman, 1-5 July 1986, pp. 1-51.
|
[7]
|
B. N. Routaray, R. G. Mishra and S. N. Das, “Genetic Variability and Effectiveness of Some Chemical Mutagens on Blackgram in Relation to Resistance Source against Meloidogyne incognita,” Current Agricultural Research, Vol. 8, No. 3-4, 1995, pp. 113-118.
|
[8]
|
N. Benslimani and L. Khelifi, “Induction of Dormancy in Spanish Groundnut Seeds (Arachis hypogaea L.) Using Cobalt 60 Gamma Irradiation,” In: Q. Y. Shu, Ed., Induced Plant Mutations in the Genomics Era, Food and Agriculture Organization of the United Nations (FAO), Rome, 2009, pp. 381-384.
|
[9]
|
H. L. Nadaf, S. B. Kaveri, K. Madhusudan and B. N. Motagi, “Induced Genetic Variability for Yield and Yield Components in Peanut (Arachis hypogaea L.),” In: Q. Y. Shu, Ed., Induced Plant Mutations in the Genomics Era., Food and Agriculture Organization of the United Nations (FAO), Rome, 2009, pp. 346-348.
|
[10]
|
S. A. Devi and L. Mullainathan, “Effect of Gamma Rays and Ethyl Methane Sulphonate (EMS) in M3 Generation of Blackgram (Vigna mungo L. Hepper),” African Journal of Biotechnology, Vol. 11, No. 15, 2012, pp. 3548-3552.
|
[11]
|
V. L. Chopra, “Mutagenesis: Investigating the Process and Processing the Outcome for Crop Improvement,” Current Science, Vol. 89, No. 2, 2005, pp. 353-359.
|
[12]
|
M. A. Pitirmovae, “Effect of Gamma Rays and Mutagens on Barley Seeds,” Fiziol. Res., Vol. 6, 1979, pp. 127-131.
|
[13]
|
H. L. Hanan, M. A. Abdalla and S. A. Farag, “RadioStimulation of Phytohormons and Bioactive Components of Coriander Seedlings,” Turkish Journal of Biochemistry, Vol. 36, No. 3, 2011, pp. 230-236.
|
[14]
|
M. Ramachandran and J. V. Goud, “Mutagenesis in Safflower (Carthamus tinctorius). I. Differential Radiosensitivity,” Genetic Agraria, Vol. 37, 1983, pp. 309-318.
|
[15]
|
M. Yaqoob and B. Ahmad, “Induced Mutation Studies in Some Mung Beans Cultivars,” Sarhad Journal of Agriculture, Vol. 1, 2003, pp. 301-365.
|
[16]
|
M. R. Khan, A. S. Qureshi, S. A. Hussain and M. Ibrahim, “Genetic Variability Induced by gamma irradiation and Its Modulation with Gibberellic Acid in M2 Generation of Chickpea (Cicer arietinum L.),” Pakistan Journal of Botany, Vol. 37, No. 2, 2005, pp. 285-292.
|
[17]
|
A. Gustafsson, A. Hagberg, G. Persson and K. Wikland, “Induced Mutation and Barley Improvement,” Theoretical Applied Genetics, Vol. 41, No. 6, 1971, pp. 239-248. http://dx.doi.org/10.1007/BF00277792
|
[18]
|
A. Shakoor, M. A. Haq and M. Sadiq, “Induced Genetic Variability in M2 and Evaluation of Promising Mutant Lines in M4 Generation of Mung Bean,” Pakistan Journal of Agricultural Science, Vol. 5, No. 1-2, 1978, pp. 1-6.
|
[19]
|
P. R. S. Kumar and S. V. Ratnam, “Mutagenic Effectiveness and Efficiency in Varieties of Sunflower (Helianthus annuus L.) by Separate and Combined Treatment with Gamma-Rays and Sodium Azide,” African Journal of Biotechnology, Vol. 9, No. 39, 2010, pp. 6517-6521.
|
[20]
|
S. K. Rao, “Gamma Ray Induced Morphological and Physiological Variations in Cicer arietinum L.,” Indian Journal of Botany, Vol. 11, No. 1, 1988, pp. 29-32.
|
[21]
|
A. Khan, K. Hayat, S. Hassan, M. Sadiq and M. Hashim, “Gamma Radiation Induced Variation in Some Genetic Parameters in Sorghum Cultivars in M2 Generation,” Sarhad Journal of Agriculture, Vol. 5, No. 2, 1989, pp. 199-203.
|
[22]
|
L. Tshilenge-Lukanda, K. K. C. Nkongolo, R. Narendrula, A. Kalonji-Mbuyi and R. V. Kizungu, “Molecular Characterization of Groundnut (Arachis hypogaea L.) Accessions from a Gene Pool: Application of Gamma Ray Radiations,” Journal of Plant Breeding and Crop Science, Vol. 4, No. 11, 2012, pp. 175-183.
|
[23]
|
G. M. Ramani and B. S. Jadon, “Induced Variability in Groundnut in M2 Generation,” Gujarat Agricultural University Research Journal, Vol. 16, No. 2, 1991, pp. 23-26.
|