A versatile vector system for generating recombinant EGFP-tagged proteins in yeast
Francesco Palma, Laura Chiarantini
DOI: 10.4236/abb.2011.21003   PDF    HTML     8,804 Downloads   14,724 Views   Citations


This paper reports a versatile egfp-tagged pFL61-based expression vector system which allows the production on yeast of homo- and heterologous proteins fused with the Enhanced Green Fluorescent Protein (EGFP) at the C-terminus. This expression system, which involves a fluorescent protein, readily allows both to verify the expression and to localize the protein in the yeast cell. The vector carries a Not I site upstream the first codon of the egfp gene. The yeast cells harbouring this plasmid emit a feeble emission compared to the fluorescence expected. Was then investigated the effect of the Not I site, located very close to the start codon, on the expression of the reporter egfp gene using northern and western blotting, fluorescence microscopy and flow cytometry. Data indicated that this palindromic site could hide the start codon so as to negatively affect translation. This aspect confers to the proposed expression system an advantage in distinguishing clones after transformation.

Share and Cite:

Palma, F. and Chiarantini, L. (2011) A versatile vector system for generating recombinant EGFP-tagged proteins in yeast. Advances in Bioscience and Biotechnology, 2, 13-19. doi: 10.4236/abb.2011.21003.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Chalfie, M., Tu, Y., Euskirchen, G., Ward, W.W. and Prasher, D. C. (1994) Green fluorescent protein as a marker for gene expression. Science, 263, 802-805. doi:10.1126/science.8303295
[2] Plautz, J.D., Day, R.N., Dailey, G.M., Welsh, S.B., Hall, J. C., Halpain, S. and Kay, S.A. (1996) Green fluorescent protein and its derivatives as versatile markers for gene expression in living Drosophila melanogaster, plant and mammalian cells. Gene, 173, 83-87.
[3] Higgs, S., Traul, D., Davis, B.S., Kamrud, K.I., Wilcox, C.L. and Beaty, B.J. (1996) Green fluorescent protein expressed in living mosquitoes--without the requirement of transformation. Biotechniques, 21, 660-664.
[4] Cubitt, A.B., Heim, R., Adams, S.R., Boyd, A.E., Gross, L.A. and Tsien, R.Y. (1995) Understanding, improving and using green fluorescent proteins. Trends in Biochemical Sciences, 20, 448-455. doi:10.1016/S0968-0004(00)89099-4
[5] Chiu, W., Niwa, Y., Zeng, W., Hirano, T., Kobayashi, H. and Sheen, J. (1996) Engineered GFP as a vital reporter in plants. Current Biology, 6, 325-330. doi:10.1016/S0960-9822(02)00483-9
[6] Baulcombe, D.C., Chapman, S. and Santa, C.S. (1995) Jellyfish green fluorescent protein as a reporter for virus infections. Plant Journal, 7, 1045-1053. doi:10.1046/j.1365-313X.1995.07061045.x
[7] Amsterdam, A., Lin, S. and Hopkins, N. (1995) The Aequorea victoria green fluorescent protein can be used as a reporter in live zebrafish embryos. Developmental Biology, 171, 123-129. doi:10.1006/dbio.1995.1265
[8] Prasher, D.C., Eckenrode, V.K., Ward, W.W., Prendergast, F.G. and Cormier, M.J. (1992) Primary structure of the Aequorea victoria green-fluorescent protein. Gene, 111, 229-233.
[9] Prasher, D.C. (1995) Using GFP to see the light. Trends in Genetics, 11, 320-323. doi:10.1016/S0168-9525(00)89090-3
[10] Inouye, S. and Tsuji, F.I. (1994) Aequorea green fluorescent protein. Expression of the gene and fluorescence characteristics of the recombinant protein. FEBS Letters, 341, 277-280. doi:10.1016/0014-5793(94)80472-9
[11] Heim, R., Cubitt, A.B. and Tsien, R.Y. (1995) Improved green fluorescence. Nature, 373, 663-664. doi:10.1038/373663b0
[12] Heim, R. and Tsien, R.Y. (1996) Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer. Current Biology, 6, 178-182. doi:10.1016/S0960-9822(02)00450-5
[13] Cormack, B.P., Valdivia, R.H. and Falkow, S. (1996) FACS-optimized mutants of the green fluorescent protein (GFP). Gene, 173, 33-38.
[14] Fuhrmann, M., Oertel, W. and Hegemann, P. (1999) A synthetic gene coding for the green fluorescent protein (GFP) is a versatile reporter in Chlamydomonas reinhardtii. Plant Journal, 19, 353-361. doi:10.1046/j.1365-313X.1999.00526.x
[15] Rizzuto, R., Brini, M., Pizzo, P., Murgia, M. and Pozzan, T. (1995) Chimeric green fluorescent protein as a tool for visualizing subcellular organelles in living cells. Current Biology, 635-642. doi:10.1016/S0960-9822(95)00128-X
[16] Koerte, A., Chong, T., Li, X., Wahane, K., and Cai, M., "Suppression of the yeast mutation rft1-1 by human p53," Journal of Biological Chemistry, 270, 22-9-1995, 22556-22564.
[17] Starling, A.L., Ortega, J.M., Gollob, K.J., Vicente, E.J., ndrade-Nobrega, G. M., and Rodriguez, M. B., "Evaluation of alternative reporter genes for the yeast two-hybrid system," Genetics and Molecular Research, 2, 2003, 124-135.
[18] Minet, M., Dufour, M.E. and Lacroute, F. (1992) Complementation of Saccharomyces cerevisiae auxotrophic mutants by Arabidopsis thaliana cDNAs. Plant Journal, 2, 417-422.
[19] Cerigini, E., Palma, F., Barbieri, E., Buffalini, M. and Stocchi, V. (2008) The Tuber borchii fruiting body-specific protein TBF-1, a novel lectin which interacts with associated Rhizobium species. FEMS Microbiology Letters, 284, 197-203. doi:10.1111/j.1574-6968.2008.01197.x
[20] Palma, F., Cerigini, E. and Stocchi, V. (2007) Yeast expression of the Tuber borchii fruiting body specific protein, TBF-1: identification of a noncanonical signal peptide. FEMS Microbiology Letters, 272, 114-119. doi:10.1111/j.1574-6968.2007.00748.x
[21] Polidori, E., Ceccaroli, P., Saltarelli, R., Guescini, M., Menotta, M., Agostini, D., Palma, F. and Stocchi, V. (2007) Hexose uptake in the plant symbiotic ascomycete Tuber borchii Vittadini: biochemical features and expression pattern of the transporter TBHXT1. Fungal Genetics and Biology, 44, 187-198. doi:10.1016/j.fgb.2006.08.001
[22] De Bellis, R., Agostini, D., Piccoli, G., Vallorani, L., Potenza, L., Polidori, E., Sisti, D., Amoresano, A., Pucci, P., Arpaia, G., Macino, G., Balestrini, R., Bonfante, P. and Stocchi, V. (1988) The tbf-1 gene from the white truffle Tuber borchii codes for a structural cell wall protein specifically expressed in fruitbody. Fungal Genetics and Biology, 25, 87-99. doi:10.1006/fgbi.1998.1092
[23] Ito, H., Fukuda, Y., Murata, K. and Kimura, A. (1983) Transformation of intact yeast cells treated with alkali cations. Journal of Bacteriology, 153, 163-168.
[24] Hill, J., Donald, K.A. and Griffiths, D.E. (1991) DMSO-enhanced whole cell yeast transformation. Nucleic Acids Research, 19, 5791. doi:10.1093/nar/19.20.5791
[25] Grignani, F., Kinsella, T., Mencarelli, A., Valtieri, M., Riganelli, D., Grignani, F., Lanfrancone, L., Peschle, C., Nolan, G. P. and Pelicci, P. G. (1998) High-efficiency gene transfer and selection of human hematopoietic progenitor cells with a hybrid EBV/retroviral vector expressing the green fluorescence protein. Cancer Research, 58, 14-19.
[26] R.Higuchi "Recombinant PCR," In: Innis, M.A., Gelfand, D.H., Sninsky, J.J. and White T.J. Ed., (1990) PCR Protocols: A Guide to Methods and Applications, Academic Press, Inc., San Diego.
[27] Laemmli, U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680-685. doi:10.1038/227680a0
[28] Rothman, James E. (1994) Mechanisms of intracellular protein transport. Nature, 372, 55-63. doi:10.1038/372055a0
[29] Palade, G. (1975) Intracellular Aspects of the Process of Protein Synthesis. Science, 189, 867. doi:10.1126/science.189.4206.867-b
[30] Nombela, C., Gil, C., and Chaffin, W.L. (2006) Non-conventional protein secretion in yeast. Trends in Microbiology, 14, 15-21. doi:10.1016/j.tim.2005.11.009
[31] Kozak, M. (1987) An analysis of 5'-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Research, 15, 8125-8148. doi:10.1093/nar/15.20.8125
[32] Kozak, M. (1999) Initiation of translation in prokaryotes and eukaryotes. Gene, 234, 187-208.
[33] Gingras, A.C., Raught, B. and Sonenberg, N. (1999) eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Annual Review of Biochemistry, 68, 913-963. doi:10.1146/annurev.biochem.68.1.913
[34] Kozak, M. (1980) Influence of mRNA secondary structure on binding and migration of 40S ribosomal subunits. Cell, 19, 79-90.
[35] Kozak, M. (1986) Influences of mRNA secondary structure on initiation by eukaryotic ribosomes. Proceedings of the National Academy of Sciences of the United States of America, 83, 2850-2854. doi:10.1073/pnas.83.9.2850
[36] Kozak, M. (1989) Circumstances and mechanisms of inhibition of translation by secondary structure in eucaryotic mRNAs. Molecular and Cellular Biology, 9, 5134-5142.
[37] Ishii, J., Izawa, K., Matsumura, S., Wakamura, K., Tanino, T., Tanaka, T., Ogino, C., Fukuda, H. and Kondo, A. (2009) A simple and immediate method for simultaneously evaluating expression level and plasmid maintenance in yeast. Journal of Biochemistry, 145, 701-708. doi:10.1093/jb/mvp028

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.