The Control of Lactobacillus sp. by Extracellular Compound Produced by Pseudomonas aeruginosa in the Fermentation Process of Fuel Ethanol Industry in Brazil


This work evaluated the effect of secondary bacterial metabolites produced by Pseudomonas sp LV strain in control of Lactobacillus sp. population in the microcosm of the vat during ethanol fermentation. The fraction F4 produced by Pseudomonas aeruginosa was extracted with dichloromethane and fractionating by vacuum liquid chromatography obtained in a methanol phase. The evaluation of antibiotic activity of F4 fraction mixed or not with sulphuric acid and Kamoram?. The antibiotic activity of F4 fraction was determined as well as the fermentation efficiency. Also was determined yeast cell viability, budding formation, the viability of budding cells, and number of populations of Saccharomyces cerevisiae and Lactobacillus sp. The results showed that the F4 fraction had high selective antibiotic activity against Lactobacillus sp. but not for S. cerevisae, and no inhibitory effect was observed in the fermentation process by yeast. Also F4 fraction decreased flocculation and foam formation. The F4 has an antibiotic activity against Lactobacillus sp. and should be used as an alternative to control bacteria contamination and foam and flocculation formation in the fuel ethanol fermentation process. The F4 fraction could reduce the use of antibiotics in the control of Lactobacillus sp. population during the fuel ethanol production.

Share and Cite:

Matsuoca Góis, C. , Lopes-Santos, L. , Oliveira Beranger, J. , de Oliveira, A. , Spago, F. and Andrade, G. (2013) The Control of Lactobacillus sp. by Extracellular Compound Produced by Pseudomonas aeruginosa in the Fermentation Process of Fuel Ethanol Industry in Brazil. Journal of Sustainable Bioenergy Systems, 3, 194-201. doi: 10.4236/jsbs.2013.33027.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] L. C. Basso, T. O. Basso and S. N. Rocha, “Ethanol Production in Brazil: The Industrial Process and Its Impact on Yeast Fermentation,” In: M. A. S. Bernardes, Ed., Biofuel Production-Recent Developments and Prospects, 2011, pp. 86-100.
[2] C. Connolly, “Bacterial Contaminants and Their Effects on Alcohol Production,” In: K. A. Jacques, T. P. Lyons and D. R. Kelsall, Eds., The Alcohol Textbook, Nottingham University Press, Nottingham, 1997.
[3] W. Lushia and P. Heist, “Antibiotic Resistant Bacteria in Fuel Ethanol Fermentations,” Ethanol Producer Magazine, 2005, pp. 80-82.
[4] K. A. Skinner and T. D. Leathers, “Bacterial Contaminants of Fuel Ethanol Production,” Journal of Industrial Microbiology & Biotechnology, Vol. 31, No. 9, 2004, pp. 401-408. doi:10.1007/s10295-004-0159-0
[5] A. R. Cherubin, “Effect of Yeast Viability and Bacterial Contamination on the Alcoholic Fermentation,” Ph.D. Dissertation, Escola Superior de Agricultura Luiz de Queiroz, Piracicaba, 2003.
[6] P. Oliva-Neto and F. Yokoya, “Effects of Nutritional Factors on Growth of Lactobacillus fermentum Mixed with Saccharomyces cerevisiae in Alcoholic Fermentation,” Revista de Microbiologia, Vol. 28, No. 1, 1997, pp. 25-31.
[7] D. B. Makanjuola, A. Tymon and D. G. Springham, “Some Effects of Lactic Acid Bacteria on Laboratory-Scale Yeast Fermentations,” Enzyme and Microbial Technology, Vol. 14, No. 5, 1992, pp. 350-357. doi:10.1016/0141-0229(92)90002-6
[8] N. V. Narendranath, S. H. Hynes, K. C. Thomas and W. M. Ingledew, “Effects of Lactobacilli on Yeast—Catalyzed Ethanol Fermentations,” Applied and Environmental Microbiology, Vol. 63, No. 11, 1997, pp. 4158-4163.
[9] D. P. Bayrock and W. M. Ingledew, “Changes in Steady State on Introduction of a Lactobacillus contaminant to a Continuous Culture Ethanol Fermentation,” Journal of Industrial Microbiology & Biotechnology, Vol. 27, No. 1, 2003, pp. 39-45. doi:10.1038/sj.jim.7000159
[10] C. T. Stroppa, M. G. S. Andrietta, S. R. Andrietta, C. Steckelberg and G. E. Serra, “Use of Penicillin and Monensin to Control Bacterial Contamination of Brazilian Alcohol Fermentations,” International Sugar Journal, Vol. 102, No. 1214, 2000, pp. 78-82.
[11] A. R. Alcarde, J. M. M. Walder and J. Horii, “Comparison between Gamma Radiation and Kamoran HJ in the Contamination of Sugarcane Must,” Journal of Food Processing and Preservation, Vol. 25, No. 2, 2001, pp. 137-147. doi:10.1111/j.1745-4549.2001.tb00449.x
[12] K. M. Bischoff, K. A. Skinner-Nemec and T. D. Leathers, “Antimicrobial Susceptibility of Lactobacillus Species Isolated from Commercial Ethanol Plants,” Journal of Industrial Microbiology & Biotechnology, Vol. 34, No. 11, 2007, pp. 739-744. doi:10.1007/s10295-007-0250-4
[13] G. E. Harman, “Myths and Dogmas of Biocontrol Changes in Perceptions Derived from Research on Trichoderma harzianum T-22,” Plant Disease, Vol. 84, No. 4, 2000, pp. 377-393. doi:10.1094/PDIS.2000.84.4.377
[14] A. G. Oliveira, L. S. Murate, F. R. Spago, L. Lopes-Santos, J. P. O. Beranger, J. A. B. S. Martin, M. A. Nogueira, J. C. P. Mello, C. G. T. Andrade and G. Andrade, “Evaluation of the Antibiotic Activity of Extracellular Compounds Produced by the Pseudomonas strain against the Xanthomonas citri pv. citri 306 Strain,” Biological Control, Vol. 56, No. 2, 2011, pp. 125-131. doi:10.1016/j.biocontrol.2010.10.008
[15] S. Chibani-Chennoufi, M. L. Dillmann, L. Marvin-Guy, S. Rami-Shojaei and H. B. Ssow, “Lactobacillus plantarum bacteriophage LP65: A New Member of the SPO1-Like Genus of the Family Myoviridae,” Journal of Bacteriology, Vol. 186, No. 21, 2004, pp. 7069-7083. doi:10.1128/JB.186.21.7069-7083.2004
[16] V. Vinderola, M. M. Briggiler, D. Guglielmotti, G. Perdigón, G. Giraffa, J. Reinheimer and A. Quiberoni, “Phage Resistant Mutants of Lactobacillus delbrueckii May Have Functional Properties That Differ from Those of Parent Strains,” International Journal of Food Microbiology, Vol. 116, No. 1, 2007, pp. 96-102. doi:10.1016/j.ijfoodmicro.2006.12.029
[17] L. G. L. Rampazo, “Evaluation of the Effect of Biological Agents and Their Products into the Incidence of Citrus Canker Lesions,” Master Dissertation, Universidade Estadual de Londrina, Londrina, 2004.
[18] “Process of Production, Purification and Obtation of Substances with Antibiotic Activity on the Control of Disease Caused by Bacteria in Plant,” Patent, 2010-PI 0803350-1, 2008.
[19] M. A. Amerine and C. S. Ough, “Análisis de Vinos y Mostos,” Editorial Acribia, Zaragoza, 1976.
[20] J. H. L. L. Eynon, “Determination of Reducing Sugars by Fehling’s Solution with Methylene Blue Indicator,” Norman Rodger, London, 1934, p. 8.
[21] M. Bonneu, M. Crouzet, M. Urdaci and M. Aigle, “Direct Selection of Yeast Mutants with Reduced Viability on Plates by Erythrosine B Staining,” Analytical Biochemistry, Vol. 193, No. 2, 1991, pp. 225-230. doi:10.1016/0003-2697(91)90013-J
[22] R. N. Neder, “Microbiologia: Manual de Laboratório,” Nobel, Sao Paulo, 1992, p. 138.
[23] T. P. Nobre, J. Horii and R. Alcarde, “Viabilidade Celular de Saccharomyces cerevisiae Cultivada em Associacao Com Bactérias Contaminantes da Fermentacao Alcoólica,” Ciência e Tecnologia de Alimentos, Vol. 27, 2007, pp. 20-25. doi:10.1590/S0101-20612007000100004
[24] J. M. Byrne, A. C. Dianese, P. Jia, H. L. Campbell, D. A. Cuppels, F. J. Louws, S. A. Miller, J. B. Jones and M. Wilson, “Biological Control of Bacterial Spot of Tomato under Weld Conditions at Several Locations in North America,” Biological Control, Vol. 32, No. 3, 2005, pp. 408-418. doi:10.1016/j.biocontrol.2004.12.001
[25] R. G. Mafia, A. C. Alfenas, L. A. Maffia, E. M. Ferreira, D. H. B. Binoti and G. M. V. Mafia, “Plant Growth Promoting Rhizobacteria as Agents in the Biocontrol of Eucalyptus Mini-Cutting Root,” Tropical Plant Pathology, Vol. 34, No. 1, 2009, pp. 10-17. doi:10.1590/S1982-56762009000100002
[26] F. Lemessa, and W. Zeller, “Screening Rhizobacteria for Biological Control of Ralstonia solanacearum in Ethiopia,” Biological Control, Vol. 42, No. 3, 2007, pp. 336-344. doi:10.1016/j.biocontrol.2007.05.014
[27] S. Todorova and L. Kozhuharova, “Characteristics and Antimicrobial Activity of Bacillus subtilis Strains Isolated from Soil,” World Journal of Microbiology and Biotechnology, Vol. 26, No. 7, 2010, pp. 1207-1216. doi:10.1007/s11274-009-0290-1
[28] J. Peng, L. Zhang, Z.-H. Gu, Z.-Y. Ding and G.-Y. Shi, “The Role of Nisin in Fuel Ethanol Production with Saccharomyces cerevisiae,” Letters in Applied Microbiology, Vol. 55, No. 2, 2012, pp. 128-134. doi:10.1111/j.1472-765X.2012.03275.x
[29] P. Oliva-Neto and F. Yokoya, “Susceptibility of Saccharomyces cerevisiae and Lactic Acid Bacteria from the Alcohol Industry to Several Antimicrobial Compounds,” Brazilian Journal of Microbiology, Vol. 32, No. 1, 2001, pp. 10-14. doi:10.1590/S1517-83822001000100003
[30] G. B. Calleja, “Cell Aggregation,” In: A. H. Rose and J. S. Harrison, Eds., The Yeasts, Academic Press, London, 1987, pp. 165-237.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.