[1]
|
Lagor, W.R., de Groh, E.D. and Ness, G.C. (2005) Diabetes alters the occupancy of the hepatic 3-hydroxy-3-methylglutaryl CoAreductase promoter. The Journal of Biological Chemistry, 280, 36601-36608.
http://dx.doi.org/10.1074/jbc.M504346200
|
[2]
|
Lakshmanan, M.R., Nepokroeff, C.M., Ness, G.C., Dugan, R.E. and Porter, J.W. (1973) Stimulation by insulin of rat liver 3-hydroxy-3-methylglutaryl coenzyme A reductase and cholesterol synthesizing activity. Biochemical and Biophysical Research Communications, 50, 704-710. http://dx.doi.org/10.1016/0006-291X(73)91301-6
|
[3]
|
Ness, G.C., Wiggins, L. and Zhao, Z. (1994) Insulin increases hepatic 3-hydroxy-3-methylglutaryl coenzyme A reductase mRNA and immunoreactive protein levels in diabetic rats. Archives of Biochemistry and Biophysics, 309, 193-194. http://dx.doi.org/10.1006/abbi.1994.1102
|
[4]
|
Ness, G.C., Zhao, Z. and Wiggins, L. (1994) Insulin and glucagon modulate hepatic 3-hydroxy-3-methylglutaryl coenzyme A reductase activity by affecting immunoreactive protein levels. The Journal of Biological Chemistry, 269, 29168-29172.
|
[5]
|
Ness, G.C. and Chambers, C.M. (2000) Feedback and hormonal regulation of hepatic 3-hydroxy-3-methylglutaryl coenzyme reductase: The concept of cholesterol buffering capacity. Proceedings of the Society for Experimental Biology and Medicine, 224, 8-19.
http://dx.doi.org/10.1046/j.1525-1373.2000.22359.x
|
[6]
|
Ness, G.C. and Gertz, K.R. (2004) Increased sensitivity to dietary cholesterol in diabetic and hypothyroid rats associated with low levels of hepatic HMG-CoA reductase expression. Experimental Biology and Medicine, 229, 407-411.
|
[7]
|
Stoecklin, G., Tenenbaum, S.A., Mayo, T., Chittur, S.V., George, A.D., Baroni, T.E., Blackshear, P.J. and Anderson, P. (2008) Genome-wide analysis identifies interleukin-10 mRNA as target of tristetraprolin. The Journal of Biological Chemistry, 283, 11689-11699.
http://dx.doi.org/10.1074/jbc.M709657200
|
[8]
|
Masuda, K., Marasa, B., Martindale, J.L., Halushka, M.K. and Gorospe, M. (2009) Tissue-and age-dependent expression of RNA-binding proteins that influence mRNA turnover and translation. Aging, 1, 681-698.
|
[9]
|
Liang, J., Lei, T., Song, Y., Yanes, N., Qi, Y. and Fu, M. (2009) RNA-destabilizing factor tristetraprolin negatively regulates NF-kB signaling. The Journal of Biological Chemistry, 284, 29383-29390.
http://dx.doi.org/10.1074/jbc.M109.024745
|
[10]
|
Schichi, Y.M., Resch, U., Hofer-Warbinek, R. and de Martin, R. (2009) Tristetraprolin impairs NF-kB nuclear translocation. The Journal of Biological Chemistry, 284, 29571-29581. http://dx.doi.org/10.1074/jbc.M109.031237
|
[11]
|
Ness, G.C., Edelman, J.M. and Brooks, P.A. (2012) Involvement of tristetraprolin in transcriptional activation of hepatic 3-hydroxy-3-methylglutaryl coenzyme A reductase by insulin. Biochemical and Biophysical Research Communications, 420, 178-182.
http://dx.doi.org/10.1016/j.bbrc.2012.02.138
|
[12]
|
Lai, W.S., Stumpo, D.J. and Blackshear, P.J. (1990) Rapid insulin-stimulated accumulation of an mRNA encoding a proline-rich protein. The Journal of Biological Chemistry, 265, 16556-16563.
|
[13]
|
Clement, S.L., Scheckel, C., Stoecklin, G. and Lykke-Andersen, J. (2011) Phosphorylation of tristetraprolin by MK2 impairs AU-rich element mRNA decay by preventing deadenylase recruitment. Molecular and Cellular Biology, 31, 256-266. http://dx.doi.org/10.1128/MCB.00717-10
|
[14]
|
Li, X., Monks, B., Ge, Q. and Birnbaum, M.J. (2007) Akt/ PKB regulates hepatic metabolism by directly inhibiting PGC-1α transcription coactivator. Nature, 447, 1012-1016. http://dx.doi.org/10.1038/nature05861
|
[15]
|
Kleinman, E., Carter, G., Ghansah, T., Patel, N.A. and Cooper, D.R. (2009) Developmentally spliced PKC beta II provides a possible link between mTORC2 and Aktkinase to regulate 3T3-L1 adipocyte insulin-stimulated glucose transport. Biochemical and Biophysical Research Communications, 388, 554-559.
http://dx.doi.org/10.1016/j.bbrc.2009.08.063
|
[16]
|
Song, S., Attia, R.R., Connaughton, S., Niesen, M.I., Ness, G.C., Elam, M.B., Hori, R.T., Cook, G.A. and Park, E.A. (2010) Peroxisome proliferator activated receptor α (PPARα) and PPAR gamma coactivator (PGC-1α) induce carntine palmitoyltransferase IA (CPT-1A) via independent gene elements. Molecular and Cellular Endocrinology, 325, 54-63.
http://dx.doi.org/10.1016/j.mce.2010.05.019
|
[17]
|
Boone, L.R., Niesen, M.I., Jaroszeski, M. and Ness, G.C. (2009) In Vivo identification of promoter elements and transcription factors mediating activation of hepatic HMG-CoAreductase by T3. Biochemical and Biophysical Research Communications, 385, 466-471.
http://dx.doi.org/10.1016/j.bbrc.2009.05.093
|
[18]
|
Saltiel, A.R. and Kahn, C.R. (2001) Insulin signaling and the regulation of glucose and lipid metabolism. Nature, 414, 799-806. http://dx.doi.org/10.1038/414799a
|
[19]
|
Lu, M., Wan, M., Leavens, K.F., Chu, Q., Monks, B.R., Fernandez, S., Ahima, R.S., Ueki, K., Kahn, C.R. and Birnbaum, M.J. (2012) Insulin regulates liver metabolism in vivo in the absence of hepatic Akt and Foxo1. Nature Medicine, 18, 388-395.
http://dx.doi.org/10.1038/nm.2686
|
[20]
|
Yoon, J.C., Puigserver, P., Chen, G., Donovan, J., Wu, Z., Rhee, J., Adelmant, G., Stafford, J., Kahn, C.R., Granner, D.K., Newgard, C.B. and Spiegelman, B.M. (2001) Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature, 413, 131-138.
http://dx.doi.org/10.1038/35093050
|
[21]
|
Ness, G.C., Wiggins, L. and Zhao, Z. (1994) Insulin increases hepatic 3-hydroxy-3-methylglutaryl coenzyme A reductase mRNA and immunoreactive protein levels in diabetic rats. Archives of Biochemistry and Biophysics, 309, 193-194. http://dx.doi.org/10.1006/abbi.1994.1102
|
[22]
|
Roth, U., Curth, K., Unterman, T.G. and Kietzmann, T. (2004) The transcription factors HIF-1 and HNF-4 and the coactivator p300 are involved in insulin-regulated glucokinase gene expression via the phosphatidylinositol-3-kinase/protein kinase B pathway. The Journal of Biological Chemistry, 279, 2623-2631.
http://dx.doi.org/10.1074/jbc.M308391200
|
[23]
|
Hagiwara, A., Cornu, M., Cybulski, N., Polak, P., Betz, C., Trapani, F., Terracciano, L., Heim, M.H., Ruegg, M.A. and Hall, M.N. (2012) Hepatic mTORC2 activates glycolysis and lipogenesis through Akt, glucokinase and SREBP1c. Cell Metabolism, 15, 725-738.
http://dx.doi.org/10.1016/j.cmet.2012.03.015
|
[24]
|
Porstmann, T., Griffths, B., Chung, Y.-L., Delpuech, O., Griffths, J.R., Downward, J. and Schulze, A. (2005) PKB/ Akt induces transcription of enzymes involved in cholesterol and fatty acid biosynthesis via activation of SREBP. Oncogene, 24, 6465-6481.
|
[25]
|
Huang, Z., Zhou, X., Nicholson, A.C., Gotto Jr., A.M., Hajjar, D.P. and Han, J. (2008) Activation of peroxisome-proliferator-activated receptor α in mice induces expression of the hepatic low-density lipoprotein receptor. British Journal of Pharmacology, 155, 596-605.
http://dx.doi.org/10.1038/bjp.2008.331
|