[1]
|
L. G. Presta, H. Chen, S. J. O’Connor, V. Chisholm, Y. G. Meng, et al., “Humanization of an Anti-Vascular Endothelial Growth Factor Monoclonal Antibody for the Therapy of Solid Tumors and Other Disorders,” Cancer Research, Vol. 57, No. 20, 1997, pp. 4593-4599.
|
[2]
|
K. J. Kim, B. Li, K. Houck, J. Winer and N. Ferrara, “The Vascular Endothelial Growth Factor Proteins: Identification of Biologically Relevant Regions by Neutralizing Monoclonal Antibodies,” Growth Factors, Vol. 7, No.1, 1992, pp. 53-64. doi:10.3109/08977199209023937
|
[3]
|
Y. Wang, D. Fei, M. Vanderlaan and A. Song, “Biological Activity of Bevacizumab, a Humanized Anti-Vegf Antibody in Vitro,” Angiogenesis, Vol. 7, No. 4, 2004, pp. 335-345. doi:10.1007/s10456-004-8272-2
|
[4]
|
K. J. Kim, B. Li, J. Winer, M. Armanini, N. Gillett, et al., “Inhibition of Vascular Endothelial Growth Factor-Induced Angiogenesis Suppresses Tumour Growth in Vivo,” Nature, Vol. 362, No. 6423, 1993, pp. 841-844.
doi:10.1038/362841a0
|
[5]
|
H. P. Gerber and N. Ferrara, “Pharmacology and Pharmacodynamics of Bevacizumab as Monotherapy or in Combination with Cytotoxic Therapy in Preclinical Studies,” Cancer Research, Vol. 65, No. 3, 2005, pp. 671-680.
|
[6]
|
P. V. Dickson, J. B. Hamner, T. L. Sims, C. H. Fraga, C. Y. Ng, et al., “Bevacizumab-Induced Transient Remodeling of the Vasculature in Neuroblastoma Xenografts Results in Improved Delivery and Efficacy of Systemically Administered Chemotherapy,” Clinical Cancer Research, Vol. 13, No. 13, 2007, pp. 3942-3950.
doi:10.1158/1078-0432.CCR-07-0278
|
[7]
|
M. Yanagisawa, K. Fujimoto-Ouchi, K. Yorozu, Y. Yamashita and K. Mori, “Antitumor Activity of Bevacizumab in Combination with Capecitabine and Oxaliplatin in Human Colorectal Cancer Xenograft Models,” Oncology Reports, Vol. 22, No. 2, 2009, pp. 241-247.
|
[8]
|
M. Yanagisawa, K. Yorozu, M. Kurasawa, K. Nakano, K. Furugaki, et al., “Bevacizumab Improves the Delivery and Efficacy of Paclitaxel,” Anticancer Drugs, Vol. 21, No. 7, 2010, pp. 687-694.
|
[9]
|
Y. Yamashita-Kashima, K. Fujimoto-Ouchi, K. Yorozu, M. Kurasawa, M. Yanagisawa, et al., “Biomarkers for Antitumor Activity of Bevacizumab in Gastric Cancer Models,” BMC Cancer, Vol. 12, 2012, p. 37.
doi:10.1186/1471-2407-12-37
|
[10]
|
S. B. Horwitz, “Mechanism of Action of Taxol,” Trends in Pharmacological Sciences, Vol. 13, No. 4, 1992, pp. 134-136. doi:10.1016/0165-6147(92)90048-B
|
[11]
|
K. Miller, M. Wang, J. Gralow, M. Dickler, M. Cobleigh, et al., “Paclitaxel plus Bevacizumab versus Paclitaxel Alone for Metastatic Breast Cancer,” New England Journal of Medicine, Vol. 357, No. 26, 2007, pp. 2666-2676.
doi:10.1056/NEJMoa072113
|
[12]
|
M. Tanaka, Y. Takamatsu, K. Anan, S. Ohno, R. Nishimura, et al., “Oral Combination Chemotherapy with Capecitabine and Cyclophosphamide in Patients with Metastatic Breast Cancer: A Phase II Study,” Anti-Cancer Drugs, Vol. 21, No. 4, 2010, pp. 453-458.
doi:10.1097/CAD.0b013e328336acb1
|
[13]
|
H. Yasuno, M. Kurasawa, M. Yanagisawa, Y. Sato, N. Harada, et al., “Predictive Markers of Capecitabine Sensitivity Identified from the Expression Profile of Pyrimidine Nucleoside-Metabolizing Enzymes,” Oncology Reports, Vol. 29, No. 2, 2013, pp. 451-458.
|
[14]
|
T. Ishikawa, F. Sekiguchi, Y. Fukase, N. Sawada and H. Ishitsuka, “Positive Correlation between the Efficacy of Capecitabine and Doxifluridine and the Ratio of Thymidine Phosphorylase to Dihydropyrimidine Dehydrogenase Activities in Tumors in Human Cancer Xenografts,” Cancer Research, Vol. 58, No. 4, 1998, pp. 685-690.
|
[15]
|
M. Endo, N. Shinbori, Y. Fukase, N. Sawada, T. Ishikawa, et al., “Induction of Thymidine Phosphorylase Expression and Enhancement of Efficacy of Capecitabine or 5’-Deoxy-5-Fluorouridine by Cyclophosphamide in Mammary Tumor Models,” International Journal of Cancer, Vol. 83, No. 1, 1999, pp. 127-134.
doi:10.1002/(SICI)1097-0215(19990924)83:1<127::AID-IJC22>3.0.CO;2-6
|
[16]
|
N. Sawada, T. Ishikawa, Y. Fukase, M. Nishida, T. Yoshikubo, et al., “Induction of Thymidine Phosphorylase Activity and Enhancement of Capecitabine Efficacy by Taxol/Taxotere in Human Cancer Xenografts,” Clinical Cancer Research, Vol. 4, No. 4, 1998, pp. 1013-1019.
|
[17]
|
J. Cassidy, J. Tabernero, C. Twelves, R. Brunet, C. Butts, et al., “Xelox (Capecitabine plus Oxaliplatin): Active First-Line Therapy for Patients with Metastatic Colorectal Cancer,” Journal of Clinical Oncology, Vol. 22, No. 11, 2004, pp. 2084-2091. doi:10.1200/JCO.2004.11.069
|
[18]
|
N. Sawada, K. Kondoh and K. Mori, “Enhancement of Capecitabine Efficacy by Oxaliplatin in Human Colorectal and Gastric Cancer Xenografts,” Oncology Reports, Vol. 18, No. 4, 2007, pp. 775-778.
|
[19]
|
K. Fujimoto-Ouchi, M. Yanagisawa, F. Sekiguchi and Y. Tanaka, “Antitumor Activity of Erlotinib in Combination with Capecitabine in Human Tumor Xenograft Models,” Cancer Chemotherapy and Pharmacology, Vol. 57, No. 5, 2006, pp. 693-702. doi:10.1007/s00280-005-0079-3
|
[20]
|
N. Sawada, T. Ishikawa, F. Sekiguchi, Y. Tanaka and H. Ishitsuka, “X-Ray Irradiation Induces Thymidine Phosphorylase and Enhances the Efficacy of Capecitabine (Xeloda) in Human Cancer Xenografts,” Clinical Cancer Research, Vol. 5, 1999, pp. 2948-2953.
|
[21]
|
E. Mechetner, A. Kyshtoobayeva, S. Zonis, H. Kim, R. Stroup, et al., “Levels of Multidrug Resistance (mdr1) p-Glycoprotein Expression by Human Breast Cancer Correlate with in Vitro Resistance to Taxol and Doxorubicin,” Clinical Cancer Research, Vol. 4, 1998, pp. 389-398.
|
[22]
|
J. P. de Hoon, J. Veeck, B. E. Vriens, T. G. Calon, M. van Engeland, et al., “Taxane Resistance in Breast Cancer: A Closed Her2 Circuit?” Biochimica et Biophysica Acta, Vol. 1825, No. 2, 2012, pp. 197-206.
|
[23]
|
A. K. Koutras, I. Starakis, U. Kyriakopoulou, P. Katsaounis, A. Nikolakopoulos, et al., “Targeted Therapy in Colorectal Cancer: Current Status and Future Challenges,” Current Medicinal Chemistry, Vol. 18, No. 11, 2011, pp. 1599-1612. doi:10.2174/092986711795471338
|
[24]
|
S. Tejpar, H. Prenen and M. Mazzone, “Overcoming Resistance to Antiangiogenic Therapies,” Oncologist, Vol. 17, No. 8, 2012, pp. 1039-1050.
doi:10.1634/theoncologist.2012-0068
|
[25]
|
N. Ferrara and R. S. Kerbel, “Angiogenesis as a Therapeutic Target,” Nature, Vol. 438, No. 7070, 2005, pp. 967-974. doi:10.1038/nature04483
|
[26]
|
M. F. Mulcahy, “Bevacizumab in the Therapy for Refractory Metastatic Colorectal Cancer,” Biologics, Vol. 2, No. 1, 2008, pp. 53-59.
|