Nanocrystalline Mixed Oxides Containing Magnesium Prepared by a Combined Sol-Gel and Self-Combustion Method for Catalyst Applications

Abstract

MgFe2O4 spinel ferrite and La0.6Pb0.2Mg0.2MnO3 perovskite nanopowders were synthesized by a combined sol-gel and self-combustion method and heat treatment. The morphological and structural characterization of the obtained powders has been performed with various techniques: X-ray diffraction (XRD), SEM observations, EDAX spectroscopy and BET analysis. The samples have been catalytically tested in flameless combustion reaction of acetone, benzene, propane and Pb free gasoline at atmospheric pressure. The results revealed a higher catalytic activity of La0.6Pb0.2Mg0.2 MnO3 perovskite than that of MgFe2O4 ferrite. This higher catalytic activity can be ascribed to smaller crystallite size (27 nm), larger surface area (8.5 m2/g) and the presence of manganese cations with variable valence (Mn3+ - Mn4+). The current results suggest that La0.6Pb0.2Mg0.2MnO3 perovskite is preferable to the Mg ferrite and that it can be a promising catalyst for acetone and propane combustion at low temperatures.

 

Share and Cite:

N. Rezlescu, E. Rezlescu, L. Sachelarie, P. Popa, C. Doroftei and M. Ignat, "Nanocrystalline Mixed Oxides Containing Magnesium Prepared by a Combined Sol-Gel and Self-Combustion Method for Catalyst Applications," Materials Sciences and Applications, Vol. 4 No. 8, 2013, pp. 447-452. doi: 10.4236/msa.2013.48054.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] A. C. F. M. Costa, R. T. Lula, R. H. G. A. Kiminami, L. F. V. Gama, A. A. de Jesus and H. M. C. Andrade, “Preparation of Nanostructured NiFe2O4 Catalysts by Combustion Reaction,” Journal of Materials Science, Vol. 41, No. 15, 2006, pp. 4871-4875, doi:10.1007/s10853-006-0048-1
[2] M. F. M. Zwinkels, S. G. Jaras and P. G. Menon, “Catalytic Materials for High-Temperature Combustion,” Catalysis Reviews: Science and Engineering, Vol. 35, No. 3, 1993, pp. 319-358. doi:10.1080/01614949308013910
[3] S. Ponce, M. A. Pena and J. L. G. Fierro, “Surface PropErties and Catalytic Performance in Methane Combustion of Sr-Substituted Lanthanum Manganites,” Applied Catalysis B-Environmental, Vol. 24, No. 3-4, 2000, pp. 193-205. doi:10.1016/S0926-3373(99)00111-3
[4] G. Saracco, F. Geobaldo and G. Baldi, “Methane Combustion on Mg-Doped LaMnO3 Perovskite Catalysts,” Applied Catalysis B-Environmental, Vol. 20, No. 4, 1999, pp. 277-288. doi:10.1016/S0926-3373(98)00118-0
[5] C. Oliva, L. Bonoldi, S. Cappelli, L. Fabbrini, I. Rossetti and L. Forni, “Effect of Preparation Parameters on SrTiO3±δ Catalyst for the Flameless Combustion of Methane,” Journal of Molecular Catalysis A-Chemical, Vol. 226, No. 1, 2005, pp. 33-40. doi:10.1016/j.molcata.2004.09.023
[6] P. D. Popa, N. Rezlescu and Gh. Iacob, “A New Procedure for Preparing Ferrite Powders,” Romanian Patent No. 121300, 2008.
[7] S. Lowell, J. E. Shields, M. A. Thomas and M. Thommes, “Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density,” Kluwer Academic Publishers, Dordrecht/Boston/London, 2004. doi:10.1007/978-1-4020-2303-3
[8] R. Mahendiran, R. Mahesh, A. K. Raychaudhurim and C. N. R. Rao, “Room-Temperature Giant Magnetoresistance in La1-xPbxMnO3,” Journal of Physics D-Applied Physics, Vol. 28, No. 8, 1995, pp. 1743-1745. doi:10.1088/0022-3727/28/8/027
[9] G. Leofanti, M. Padovan, G. Tozzola and B. Venturelli, “Surface Area and Pore Texture of Catalysts,” Catalysis Today, Vol. 41, No. 1-3, 1998, pp. 207-219. doi:10.1016/S0920-5861(98)00050-9
[10] E. Kierlik, M. L. Rosinberg, G. Trajus and P. Viot, “Equilibrium and Out-Of-Equilibrium (Hysteretic) Behavior of Fluids in Disordered Porous Materials: Theoretical Predictions,” Physical Chemistry Chemical Physics, Vol. 3, No. 7, 2001, pp. 1201-1206. doi:10.1039/b008636n
[11] N. Rezlescu, E. Rezlescu, P. D. Popa, E. Popovici, C. Doroftei and M. Ignat, “Preparation and Characterization of Spinel-Type MeFe2O4 (Me = Cu, Cd, Ni and Zn) for Catalyst Applications,” Material Chemistry and Physics, Vol. 137, No. 3, 2013, pp. 922-927. doi:10.1016/j.matchemphys.2012.11.005
[12] N. Rezlescu, E. Rezlescu, P. D. Popa, C. Doroftei and M. Ignat, “Nanostructured GdAlO3 Perovskite, a New Possible Catalyst for Combustion of Volatile Organic Compounds,” Journal of Materials Science, Vol. 48, No. 12, 2013, pp. 4297-4304. doi:10.1007/s10853-013-7243-7
[13] R. Spinicci, M. Faticanti, P. Marini, S. De Rossi and P. Porta, “Catalytic Activity of LaMnO3 and LaCoO3 Perovskites towards VOCs Combustion,” Journal of Molecular Catalysis A: Chemical, Vol. 197, No. 1-2, 2003, pp. 147-155, doi:10.1016/S1381-1169(02)00621-0
[14] J. Shu and S. Kaliaguine, “Well-Dispersed PerovskiteType Oxidation Catalysts,” Applied Catalysis B: Environmental, Vol. 16, No. 4, 1998, pp. L303-L308. doi:10.1016/S0926-3373(97)00097-0
[15] A. A. Taskin, A. N. Lavrov and Y. Ando, “Fast Oxygen Diffusion in A-Site Ordered Perovskites,” Progress in Solid State Chemistry, Vol. 35, No. 2-4, 2007, pp. 481-490. doi:10.1016/j.progsolidstchem.2007.01.014
[16] H. Arai, T. Yamada, K. Eguchi and T. Seiyama, “Catalytic Combustion of Methane over Various PerovskiteType Oxides,” Applied Catalysis, Vol. 26, No. 1-2, 1986, pp. 265-276. doi:10.1016/S0166-9834(00)82556-7

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.