[1]
|
P. Benioff, “New Gauge Field from Extension of Space Time Parallel Transport of Vector Spaces to the Underlying Number Systems,” International Journal of Theoretical Physics, Vol. 50, No. 6, 2011, pp. 1887-1907.
doi:10.1007/s10773-011-0704-3
|
[2]
|
P. Benioff, “Effects on Quantum Physics of the Local Availability of Mathematics and Space Time Dependent Scaling Factors for Number Systems,” In: I. Ion Cotaescu, Ed., Advances in Quantum Theory, InTech, 2012.
http://www.intechopen.com/
doi:10.5772/36485
|
[3]
|
J. Barwise, “An Introduction to First Order Logic,” In: J. Barwise, Ed., Handbook of Mathematical Logic, North-Holland Publishing Co., New York, 1977, pp. 5-46.
doi:10.1016/S0049-237X(08)71097-8
|
[4]
|
H. J. Keisler, “Fundamentals of Model Theory,” In: J. Barwise, Ed., Handbook of Mathematical Logic, North-Holland Publishing Co., New York, 1977, pp. 47-104.
doi:10.1016/S0049-237X(08)71098-X
|
[5]
|
R. Kaye, “Models of Peano Arithmetic,” Clarendon Press, Oxford, 1991, pp. 16-21.
|
[6]
|
Wikipedia: Integral Domain.
|
[7]
|
A. J. Weir, “Lebesgue Integration and Measure,” Cambridge University Press, New York, 1973, p. 12.
|
[8]
|
J. Randolph, “Basic Real and Abstract Analysis,” Academic Press, Inc., New York, 1968, p. 26.
|
[9]
|
J. Shoenfield, “Mathematical Logic,” Addison Weseley Publishing Co. Inc., Reading, 1967, p. 86.
|
[10]
|
Wikipedia: Complex Conjugate.
|
[11]
|
R. Smullyan, “Goel’s Incompleteness Theorems,” Oxford University Press,, New York, 1992, p. 29.
|
[12]
|
S. Lang, “Algebra,” 3rd Edition, Addison Weseley Publishing Co., Reading, 1993, p. 272.
|
[13]
|
I. Adamson, “Introduction to Field Theory,” 2nd Edition, Cambridge University Press, New York, 1982, Chapter 1.
|
[14]
|
W. Rudin, “Principles of Mathematical Analysis,” 3rd Edition, International Series in Pure and Applied Mathematics, McGraw Hill Book Co., New York, 1976, p. 172.
|
[15]
|
G. Mack, “Physical Principles, Geometric Aspects, and Locality Properties of Gauge Field Theories,” Fortshritte der Physik, Vol. 29, No. 4, 1981, pp. 135-185.
doi:10.1002/prop.19810290402
|
[16]
|
I. Montvay and G. Münster, “Quantum Fields on a Lattice,” Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 1994.
doi:10.1017/CBO9780511470783
|
[17]
|
C. N. Yang and R. L. Mills, “Conservation of Isotopic Spin and Isotopic Gauge Invariance,” Physical Review, Vol. 96, No. 1, 1954, pp. 191-195. doi:10.1103/PhysRev.96.191
|
[18]
|
P. Benioff, “Towards a Coherent Theory of Physics and Mathematics,” Foundations of Physics, Vol. 32, No. 7, 2002, pp. 989-1029. doi:10.1023/A:1016561108807
|
[19]
|
P. Benioff, “Towards a Coherent Cheory of Physics and Mathematics: The Theory-Experiment Connection,” Foundations of Physics, Vol. 35, No. 11, 2005, pp. 1825-1856.
doi:10.1007/s10701-005-7351-6
|