On Atmospheric-Oceanic-Land Temperature Variability and Trends

Abstract

The reported overall rise in global surface temperatures since the latter 19th Century is viewed largely as an atmospheric phenomena. However, we show that the global ocean is an important component in determining global surface temperatures. Via an empirical, mathematical methodology, we reveal the intrinsic modes of variability of planetary temperatures over the past 160 years, and find periods of cooling and warming, with multiple modes of variability; seasonal, inter-annual, decadal, multi-decadal and an overall warming trend. Our calculated overall rate of warming differs significantly from the estimate of the Intergovernmental Program on Climate Change, as well as the Nongovernmental Panel on Climate Change. We also investigate the modes of variability of recognized climate factors, and find a previously unreported 140 year cycle in two climate system data sets. A relatively large amplitude 60 - 70 year cycle mode appears in all of the climate factors, and may be related to the time scale of the oceanic Meridional Overturning Circulation. This and other oceanic features may modulate global surface temperatures. An empirical relationship between fossil fuel burning and the global surface temperature anomaly time series overall trend emerges from our reduction of the non-stationary, non-linear data.

Share and Cite:

L. Pietrafesa, D. Dickey, P. Gayes, T. Yan, J. Epps, M. Hagan, S. Bao and M. Peng, "On Atmospheric-Oceanic-Land Temperature Variability and Trends," International Journal of Geosciences, Vol. 4 No. 2, 2013, pp. 417-443. doi: 10.4236/ijg.2013.42040.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] K. E. Trenberth, D. P. Stepaniak and J. M. Caron, “Interannual Variations in the Atmospheric Heat Budget,” Journal of Geophysical Research, Vol. 107, No. D8, 2002, pp. AAC 4-1-AAC 4-15. doi:10.1029/2000JD000297
[2] K. E. Trenberth, “Handbook of Weather,” In: T. D. Potter and B. R. Coleman, Eds., Climate and Water, John Wiley and Sons, Hoboken, 2003, pp. 163-173.
[3] J. M. Vogel and B. Lazar, “Global Cooling, Science and Myth,” Weatherwise, Vol. 63, No. 4, 2010, pp. 24-31. doi:10.1080/00431672.2010.490166
[4] S. Levitus, J. Antonov and T. Boyer, “Warming of the world ocean, 1955-2003,” Geophysical Research Letters, Vol. 32, No. 2, 2005, Article ID: L02604. doi:10.1029/2004GL021592
[5] N. E. Huang, Z. Shen, S. R. Long, M. L. Wu, H. H. Shih, Q. Zheng, N. C. Yen, C. C. Tung and H. H. Liu, “The Empirical Mode Decompostion and Hilbert Spectrum for Nonlinear and Nonstationary Time Series Analysis,” Proceedings of the Royal Society A, Vol. 454, No. 1971, 1998, pp. 903-995. doi:10.1098/rspa.1998.0193
[6] Z. Wu and N. E Huang, “Ensemble Empirical Mode Decomposition: A Noise-Assisted Data Analysis Method,” Advances in Adaptive Data Analysis, Vol. 1, No. 1, 2009, pp. 1-41. doi:10.1142/S1793536909000047
[7] Z. Wu, N. E. Huang, S. R. Long and C.-K. Peng, “On the Trend, Detrending and Variability of Nonlinear and Non-Stationary Time Series,” Proceedings of the National Academy of Sciences of the USA, Vol. 104, No. 38, 2007, pp. 14889-14894. doi:10.1073/pnas.0701020104
[8] J. I. Antonov, S. Levitus and T. P. Boyer, “Climatological Annual Cycle of Ocean Heat Content,” Geophysical Research Letters, Vol. 31, No. 4, 2004, Article ID: L04304. doi:10.1029/2003GL018851
[9] S. Levitus, J. Antonov and T. Boyer, “Warming of the World Ocean, 1955-2003,” Geophysical Research Letters, Vol. 32, No. 2, 2005, Article ID: L02604. doi:10.1029/2004GL021592
[10] T. Kuhlbrodt, A. Griesel, M. Montoya, A. Levermann, M. Hofmann and S. Rahmstorf, “On the Driving Processes of the Atlantic Meridional Overturning Circulation,” Reviews of Geophysics, Vol. 45, No. 2, 2007, Article ID: RG2001. doi:10.1029/2004RG000166
[11] J. M. Lyman, S. A. Good, V. V. Gouretski, M. Ishii, G. C. Johnson, M. D. Palmer, D. M. Smith and J. K. Willis, “Robust Warming of the Global Upper Ocean,” Nature, Vol. 465, 2010, pp. 334-337. doi:10.1038/nature09043
[12] J. W. Hurrell, “Decadal Trends in the North Atlantic Oscillation: Regional Temperatures and Precipitation,” Science, Vol. 269, No. 5224, 1995, pp. 676-679. doi:10.1126/science.269.5224.676
[13] M. H. Visbeck, J. W. Hurrell, L. Polvanis and H. Cullen, “The North Atlantic Oscillation: Past, Present, Future,” Proceedings of the National Academy of Sciences, Vol. 98, No. 3, 2001, pp. 12876-12877. doi:10.1073/pnas.231391598
[14] Y. Zhang, J. M. Wallace and D. S. Battisti, “ENSO-like interdecadal variability: 1900-93,” Journal of Climate, Vol. 10, No. 5, 1997, pp. 1004-1020. doi:10.1175/1520-0442(1997)010<1004:ELIV>2.0.CO;2
[15] “Marine Department Report,” Japan Meteorological Agency, 1991.
[16] M. Chelliah and G. D. Bell, “Tropical Multidecadal and Interannual Climate Variations in the NCEP-NCAR Reanalysis,” Journal of Climate, Vol. 17, No. 9, 2004, pp. 1777-1803. doi:10.1175/1520-0442(2004)017<1777:TMAICV>2.0.CO;2
[17] L. D. Talley, “Shallow, Intermediate and Deep Overturning Components of the Global Heat Budget,” Journal of Physical Oceanography, Vol. 33, No. 3, 2003, pp. 530-560. doi:10.1175/1520-0485(2003)033<0530:SIADOC>2.0.CO;2
[18] T. Kanzow, S. A. Cunningham, D. Rayner, J. J.-M. Hirschi, W. E. Johns, M. O. Baringer, H. L. Bryden, L. M. Beal, C. S. Meinen and J. Marotzke, “Observed Flow Compensation Associated with the MOC at 26.5°N in the Atlantic,” Science, Vol. 317, No. 5840, 2007, pp. 938-941. doi:10.1126/science.1141293
[19] W. Park and M. Latif, “Multidecadal and Multicentennial Variability of the Meridional Overturning Circulation,” Geophysical Research Letters, Vol. 35, 2008, Article ID: L22703. doi:10.1029/2008GL035779
[20] A. Biastoch, C. W. Boning and J. R. E. Lutjeharms, “Agulhas Leakage Dynamics Affects Decadal Variability in Atlantic Overturning Circulation,” Nature, Vol. 456, No. 7221, 2008, pp. 489-492. doi:10.1038/nature07426
[21] A. Biastoch, J. R. E. Lutjeharms, C. W. Boning and M. Scheinert, “Mesoscale Perturbations Control Inter-Ocean Exchange South of Africa,” Geophysical Research Letters, Vol.35, No. 20, 2008, Article ID: L20602. doi:10.1029/2008GL035132
[22] A. Biastoch, C. W. Boning, J. Getzlaff, J.-M. Molines and G. Madec, “Mechanisms of Interannual—Decadal Variability in the Meridional Overturning Circulation of the Mid-Latitude North Atlantic Ocean,” Journal of Climate, Vol. 21, No. 24, 2008, pp. 6599-6615. doi:10.1175/2008JCLI2404.1
[23] A. Schmittner, E. D. Galbraith, S. W. Hostetler, T. F. Pedersen and R. Zhang, “Large Fluctuations of Dissolved Oxygen in the Indian and Pacific Oceans during Dansgaard-Oeschger Oscillations Caused by Variations of North Atlantic Deep Water Subduction,” Paleoceanography, Vol. 22, No. 3, 2007, Article ID: PA3207. doi:10.1029/2006PA001384
[24] G. C. Johnson and J. M. Lyman, “Sea Surface Salinity. State of the Climate in 2010,” In: J. Blunden, D. S. Arndt, and M. O. Baringer, Eds., Bulletin of the American Meteorological Society, Vol. 92, No. 6, 2012, pp. S86-S88. doi:10.1175/1520-0477-92.6.S1
[25] L. Yu, P. W. Stackhouse Jr. and R. Weller, “Global Ocean Heat Fluxes. State of the Climate in 2011,” Bulletin of the American Meteorological Society, Vol. 93, No. 7, 2012, pp. S65-S68.
[26] F. álvarez-García, M. Latif and A. Biastoch, “On Multidecadal and Quasi-Decadal North Atlantic Variability,” Journal of Climate, Vol. 21, No. 14, 2008, pp. 3433-3452. doi:10.1175/2007JCLI1800.1
[27] M. Strokosz, M. Baringer, H. Bryden, S. Cunningham, T. Delworth, S. Lozier, J. Marotzke and R. Sutton, “Past, Present and Future Changes in the Atlantic Meridional Overturning Circulation,” Bulletin of the American Meteorological Society, Vol. 93, No. 11, 2012, pp. 1663-1676.
[28] T. A. Boden, G. Marland and R. J. Andres, “Global, Regional, and National Fossil-Fuel CO2 Emissions. Carbon Dioxide Information Analysis Center,” Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, 2010. doi:10.3334/CDIAC/00001_V2010
[29] N. Silver, “The Signal and the Noise, Why so Many Predictions Fail—but Some Don’t,” The Penguin Press, City of Westminster, 2012, 352 p.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.