Approach the Good, Withdraw from the Bad—A Review on Frontal Alpha Asymmetry Measures in Applied Psychological Research


Basic research has established a strong relationship between stimulus induced human motivation for approach-related behavior and left-frontal electrophysiological activity in the alpha band, i.e. frontal alpha asymmetry (FAA). Since approach motivation is also of interest for various fields of applied research, several recent studies investigated the usefulness of FAA as a diagnostic tool of stimulus induced motivational changes. The present review introduces the theory and the methods commonly used in approach/ withdrawal motivation research, and summarizes work on applied FAA with a focus on product design, marketing, brain-computer communication and mental health studies, where approach motivation is of interest. Studies investigating and developing the application of FAA training in the treatment of affective disorders such as major depressive disorder and anxiety disorder are also introduced, highlighting some of the future possibilities.

Share and Cite:

Briesemeister, B. , Tamm, S. , Heine, A. & Jacobs, A. (2013). Approach the Good, Withdraw from the Bad—A Review on Frontal Alpha Asymmetry Measures in Applied Psychological Research. Psychology, 4, 261-267. doi: 10.4236/psych.2013.43A039.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Adams, R. G., Bahr, G. S., & Moreno, B. (2008). Brain computer interfaces: Psychology and pragmatic perspectives for the future. Proceedings of the AISB 2008 Symposium on Brain Computer Interfaces and Human Computer Interaction: A Convergence of Ideas, 5, 1-6.
[2] Allen, J. J. B., Coan, J. A., & Nazarian, M. (2004). Issues and assumptions on the road from raw signals to metrics of frontal EEG asymmetry in emotion. Biological Psychology, 67, 183-218. doi:10.1016/j.biopsycho.2004.03.007
[3] Allen, J. J. B., Harmon-Jones, E., & Cavender, J. H. (2001) Manipulation of frontal EEG asymmetry through biofeedback alters self-reported emotional responses and facial EMG. Psychophysiology, 38, 685-693. doi:10.1111/1469-8986.3840685
[4] Allen, J. J. B., Urry, H. L., Hitt, S. K., & Coan, J. A. (2004). The stability of resting frontal electroencephalographic asymmetry in depression. Psychophysiology, 41, 269-280. doi:10.1111/j.1469-8986.2003.00149.x
[5] Ariely, D., & Berns, G. S. (2010). Neuromarketing: The hope and hype of neuroimaging in business. Nature Reviews Neuroscience, 11, 284-292. doi:10.1038/nrn2795
[6] Baehr, E., Rosenfeld, J. P., & Baehr, R. (1997). The clinical use of an alpha asymmetry protocol in the neurofeedback treatment of depression. Journal of Neurotherapy: Investigations in Neuromodulation, Neurofeedback and Applied Neuroscience, 2, 10-23.
[7] Baehr, E., Rosenfeld, J. P., & Baehr, R. (2001). Clinical use of an alpha asymmetry neurofeedback protocol in the treatment of mood disorders: Follow-up study one to five years post therapy. Journal of Neurtherapy, 4, 11-18. doi:10.1300/J184v04n04_03
[8] Baehr, E., Rosenfeld, J. P., Baehr, R., & Earnest, C. (1998). Comparison of two EEG asymmetry indices in depressed patients vs. normal controls. International Journal of Psychophysiology, 31, 89-92. doi:10.1016/S0167-8760(98)00041-5
[9] Baldwin, C. L., & Penaranda, B. N. (2012). Adaptive training using an artificial neural network and EEG metrics for within-and cross-task workload classification. NeuroImage, 59, 48-56. doi:10.1016/j.neuroimage.2011.07.047
[10] Berkman, E. T., & Lieberman, M. D. (2010). Appoaching the bad and avoiding the good: Lateral prefrontal cortical asymmetry distinguishes between action and valence. Journal of Cognitive Neuroscience, 22, 1970-1979. doi:10.1162/jocn.2009.21317
[11] Bruder, G. E., Stewart, J. W., Tenke, C. E., McGrath, P. J., Leite, P., Bhattacharya, N., & Quitkin, F. M. (2001). Electroencephalographic and perceptual asymmetry differences between responders and nonresponders to an SSRI antidepressant. Biological Psychiatry, 49, 416-425. doi:10.1016/S0006-3223(00)01016-7
[12] Bruder, G. E., Tenke, C. E., Warner, V., & Weissman, M. M. (2005). Grandchildren at high and low risk for depression differ in EEG measures of regional brain asymmetry. Biological Psychiatry, 62, 1317-1323. doi:10.1016/j.biopsych.2006.12.006
[13] Burshteyn, D., & Buff, C. L. (2008). Provate-label brands, manufacturer brands, and the quest for stimulus generalization: An EEG analysis of frontal cortex response. Review of Business Research, 8, 92-96.
[14] Carver, C. S., & Harmon-Jones, E. (2009). Anger is an approach-related affect: Evidence and implications. Psychological Bulletin, 135, 183-204. doi:10.1037/a0013965
[15] Choi, S. W., Chi, E. E., Chung, S. Y., Kim, J. W., Ahn, C. Y., & Kim, H. T. (2010). Is alpha wave neurofeedback effective with randomized clinical trials in depression? A pilot study. Neuropsychobiology, 63, 43-51. doi:10.1159/000322290
[16] Davidson, R. J. (1988). EEG measures of cerebral asymmetry: Conceptual and methodological issues. International Journal of Neuroscience, 39, 71-89. doi:10.3109/00207458808985694
[17] Davidson, R. J. (1998). Anterior electrophysiological asymmetries, emotion, and depression: Conceptual and methodological conundrums. Psychophysiology, 35, 607-614. doi:10.1017/S0048577298000134
[18] Davidson, R. J., Schwartz, G. E., Saron, C., Bennett, J., & Goleman, D. J. (1979). Frontal versus parietal EEG asymmetry during positive and negative affect. Psychophysiology, 16, 202-203.
[19] Earnest, C. (1999). Singe case study of EEG asymmetry biofeedback for depression: An independent replication in an adolescent. Journal of Neurotherapy: Investigations in Neuromodulation, Neurofeedback and Applied Neuroscience, 3, 28-35.
[20] Field, T., Diego, M., Hernandez-Reif, M., Cisneros, W., Feijo, L., Vera, Y., & He, Q. C. (2005). Lavender fragrance cleansing gel effects on relaxation. International Journal of Neuroscience, 115, 207-222. doi:10.1080/00207450590519175
[21] Gable, P., & Harmon-Jones, E. (2008). Relative left frontal activation to appetitive stimuli: Considering the role of individual differences. Psychophysiology, 45, 275-278. doi:10.1111/j.1469-8986.2007.00627.x
[22] Gevins, A., Smith, M. E., McEvoy, L., & Yu, D. (1997). High-resolution EEG mapping of cortical activation related to working memory: Effects of task difficulty, type of processing, and practice. Cerebral Cortex, 7, 374-385. doi:10.1093/cercor/7.4.374
[23] Gilleade, K. M., & Allanson, J. (2005). Affective videogames and modes of affective gaming: Assist me, challenge me, emote me. Proceedings of DiGRA 2005 Conference: Changing Views. Worlds in Play, 1-7.
[24] Gotlieb, I. H., Ranganath, C., & Rosenfeld, P. (1998). Frontal EEG alpha asymmetry, depression, and cognitive functioning. Cognition & Emotion, 12, 449-478. doi:10.1080/026999398379673
[25] Hammond, D. C. (2000). Neurofeedback treatment of depression with the Roshi. Journal of Neurotherapy: Investigations in Neuromodulation, Neurofeedback and Applied Neuroscience, 4, 45-56.
[26] Hammond, D. C. (2005). Neurofeedback treatment of depression and anxiety. Journal of Adult Development, 12, 131-137. doi:10.1007/s10804-005-7029-5
[27] Harmon-Jones, E., Gable, P. A., & Peterson, C. K. (2010). The role of asymmetric cortical activity in emotion-related phenomena: A review and update. Biological Psychology, 84, 451-462. doi:10.1016/j.biopsycho.2009.08.010
[28] Harmon-Jones, E., Gable, P. A., & Price, T. F. (2011). Leaning embodies desire: Evidence that leaning forward increases relative left frontal activation to appetitive stimuli. Biological Psychology, 87, 311-313. doi:10.1016/j.biopsycho.2011.03.009
[29] Huang, D., Zhang, H., Ang, K., Guan, C., Pan, Y., Wang, C., & Yu, J. (2012). Fast emotion detection from EEG using asymmetric spatial filtering. Proceedings of the International Conference on Acoustics, Speech and Signal Processing (ICASSP), 589-592.
[30] Kass, R. E., & Raftery, A. E. (1995). Bayes factors. Journal of the American Statistical Association, 90, 773-795. doi:10.1080/01621459.1995.10476572
[31] Kemp, A. H., Griffiths, K., Felmingham, K. L., Shankman, S. A., Drinkenburg, W., Arns, M., & Bryant, R. A. (2010). Disorder specificity despite comorbidity: Resting EEG alpha asymmetry in major depressive disorder and post-traumatic stress disorder. Biological Psychology, 85, 350-354. doi:10.1016/j.biopsycho.2010.08.001
[32] Kerson, C., Sherman, R. A., & Kozlowski, G. P. (2009). Alpha suppression and symmetry training for generalized anxiety symptoms. Journal of Neurotherapy, 13, 146-155. doi:10.1080/10874200903107405
[33] Keune, P. M., Schonenberg, M., Wyckoff, S., Mayer, K., Riemann, S., Hautzinger, M., & Strehl, U. (2011). Frontal alpha-asymmetry in adults with attention deficit hyperactivity disorder: Replication and specification. Biological Psychology, 87, 306-310. doi:10.1016/j.biopsycho.2011.02.023
[34] Kline, J. P., Blackhart, G. C., Woodward, K. M., Williams, S. R., & Schwartz, G. E. R. (2000). Anterior electroencephalographic asymmetry changes in elderly women in response to a pleasant and an unpleasant odor. Biological Psychology, 52, 241-250. doi:10.1016/S0301-0511(99)00046-0
[35] Ko, K.-E., Yang, H. C., & Sim, K.-B. (2009). Emotion recognition using EEG signals with relative power values and Bayesian network. International Journal of Control, Automation, and Systems, 7, 865-870. doi:10.1007/s12555-009-0521-0
[36] Kurth, B.-M. (2012). Erste Ergebnisse aus der “Studie zur Gesundheit Erwachsener in Deutschland” (DEGS). Bundesgesundheitsblatt, 55, 980-990. doi:10.1007/s00103-012-1504-5
[37] Molina, G. G., Tsoneva, T., & Nijholt, A. (2009). Emotional brain-computer interfaces. Proceedings of the International Conference on Affective Computing and Intelligent Interaction, 1-9.
[38] Moscovitch, D. A., Santesso, D. L., Miskovic, V., McCabe, R. E., Antony, M. M., & Schmidt, L. A. (2011). Frontal EEG asymmetry and symptom response to cognitive behavioral therapy in patients with social anxiety disorder. Biological Psychology, 87, 379-385. doi:10.1016/j.biopsycho.2011.04.009
[39] Mühl, C., Brouwer, A.-M., van Wouwe, N. C., van den Broek, E. L., Nijboer, F., & Heylen, D. K. J. (2011). Modality-specific affective responses and their implications for affective BCI. Proceedings of the Fifth International Brain-Computer Interface Conference 2011, 120-123.
[40] Ohme, R., Matukin, M., & Szezurko, T. (2010). Neurophysiology uncovers secrets of TV commercials. Der markt, 49, 133-142. doi:10.1007/s12642-010-0034-7
[41] Ohme, R., Reykowska, D., Wiener, D., & Choromanska, A. (2009). Analysis of neurophysiological reactions to advertising stimuli by means of EEG and galvanic skin response measures. Journal of Neuroscience, Psychology, and Economics, 2, 21-31. doi:10.1037/a0015462
[42] Ohme, R., Reykowska, D., Wiener, D., & Choromanska, A. (2010). Application of frontal EEG asymmetry to advertising research. Journal of Economic Psychology, 31, 785-793. doi:10.1016/j.joep.2010.03.008
[43] Park, M.-K., & Watanuki S. (2005). Electroencephalograhic responses and subjective evaluation on unpleasantness induced by sanitary napkins. Journal of Physiological Anthropological and Applied Human Science, 24, 67-71. doi:10.2114/jpa.24.67
[44] Poldrack, R. A. (2006). Can cognitive processes be inferred from neuroimaging data? Trends in Cognitive Sciences, 10, 59-63. doi:10.1016/j.tics.2005.12.004
[45] Price, T. F., Peterson, C. K., & Harmon-Jones, E. (2012). The emotive neuroscience of embodiment. Motivation and Emotion, 36, 27-37. doi:10.1007/s11031-011-9258-1
[46] Rosenfeld, J. P., Baehr, E., Baehr, R., Gotlib, I. H., & Ranganath, C. (1996). Preliminary evidence that daily changes in frontal alpha asymmetry correlate with changes in affect in therapy sessions. International Journal of Psychophysiology, 23, 137-141. doi:10.1016/0167-8760(96)00037-2
[47] Rosenfeld, J. P., Cha, G., Blair, T., & Gotlib, I. H. (1995). Operant (biofeedback) control of left-right frontal alpha power differences: Potential neurotherapy for affective disorders. Biofeedback and Self-Regulation, 20, 241-258. doi:10.1007/BF01474516
[48] Rutherford, H. J. V., & Lindell, A. K. (2011). Thriving and surviving: Approach and avoidance motivation and lateralization. Emotion Review, 3, 333-343. doi:10.1177/1754073911402392
[49] Sanders, C., Diego, M., Fernandez, M., Field, T., Hernandez-Reif, M. & Roca, A. (2002). EEG asymmetry responses to lavender and rose-mary aromas in adults and infants. International Journal of Neuroscience, 112, 1305-1320. doi:10.1080/00207450290158214
[50] Segrave, R. A., Cooper, N. R., Thomson, R. H., Croft, R. J., Sheppard, D. M., & Fitzgerald, P. B. (2011). Individualized alpha activity and frontal asymmetry in major depression. Clinical EEG and Neuroscience, 42, 45-52. doi:10.1177/155005941104200110
[51] Singer, E. (2008). Brain Games. Technology Review, 111, 82-84.
[52] Spronk, D., Arns, M., Bootsma, A., van Ruth, R., & Fitzgerald, P. B. (2008). Long term effects of left frontal rTMS on EEG and ERPs in patients with depression. Clinical EEG and Neuroscience, 39, 118-124. doi:10.1177/155005940803900305
[53] Stewart, J. L., Coan, J. A., Towers, D. N., & Allen, J. J. B. (2011). Frontal EEG asymmetry during emotional challenge differentiates individuals with and without major depressive disorder. Journal of Affective Disorders, 129, 167-174. doi:10.1016/j.jad.2010.08.029
[54] Thibodeau, R., Jorgensen. R. S., & Kim, S. (2006). Depression, anxiety, and resting frontal EEG asymmetry: A meta-analytic review. Journal of Abnormal Psychology, 115, 715-729. doi:10.1037/0021-843X.115.4.715
[55] Tomarken, A. J., Dichter, G. S., Garber, J., & Simien, C. (2004). Resting frontal brain activity: Linkages to maternal depression and socio-economic status among adolescents. Biological Psychology, 67, 77-102. doi:10.1016/j.biopsycho.2004.03.011
[56] Tomico, O., Mizutani, N., Levy, P., Takahiro, Y., Cho, Y., & Yamanaka, T. (2008). Kansei physiological measurements and constructivist psychological explorations for approaching user subjective experience during and after product usage. Proceedings of the DESIGN 2008, 10th International Design Conference. Croatia, 529-536
[57] Vartak, A. A. (2010). Biosignal processing challenges in emotion recognition for adaptive learning. Ph.D. Thesis, Orlando, FL: University of Central 2010.
[58] Vecchiato, G., Toppi, J., Astolfi, L., De Vico Fallani, F., Cincotti, F., Mattia, D., & Babiloni, F. (2010). Changes in brain activity during the observation of TV commercials by using EEG, GSR and HR measurements. Brain Topography, 23, 165-179. doi:10.1007/s10548-009-0127-0
[59] Vecchiato, G., Toppi, J., Astolfi, L., De Vico Fallani, F., Cincotti, F., Mattia, D., & Babiloni, F. (2011). Spectral EEG frontal asymmetries correlate with the experienced pleasantness of TV commercial advertisements. Medical & Biological Engineering & Computing, 49, 579-583. doi:10.1007/s11517-011-0747-x
[60] Wacker, J., Chavanon, M.-L., Leue, A., & Stemmler, G. (2010). Trait BIS predicts alpha asymmetry and P300 in a Go/No-Go task. European Journal of Personality, 24, 85-105.
[61] Winkler, I., Jager, M., Mihajlovic, V., & Tsoneva, T. (2010). Frontal EEG asymmetry based classification of emotional valence using common spatial patterns. World Academy of Science, Engineering and Technology, 45, 373-378.
[62] Wyczesany, M., Kaiser, J., & Barry, R. J. (2009). Cortical lateralization
[63] patterns related to self-estimation of emotional state. Acta Neurobiologiae Experimentalis, 69, 526-536.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.