FRET from CdSe/ZnS Core-Shell Quantum Dots to Fluorescein 27 Dye


Semiconductor QDs have emerged as a novel class of fluorophore with unique photoluminescence properties, in particular, CdSe/ZnS core-shell QDs have been successfully used as biocompatible fluorescence resonance energy transfer donors. Here we report FRET between CdSe/ZnS core-shell QDs (donor) and organic dye fluorescein 27 (F27) (acceptor). The results demonstrate the occurrence of efficient energy transfer in the system and the FRET efficiency is not only influenced by the spectral overlap between the QD donor emission and acceptor absorption, it might depend on QDs surface effect also. Efforts are made to correlate quantitatively spectral dependence of FRET rate with acceptor absorption spectrum, Forster distance, transfer efficiency (E) obtained employing steady-state & time-resolved technique.

Share and Cite:

M. A. Shivkumar, L. S. Inamdar, M. Hussain K. Rabinal, B. G. Mulimani, G. M. Advi Rao and S. R. Inamdar, "FRET from CdSe/ZnS Core-Shell Quantum Dots to Fluorescein 27 Dye," Open Journal of Physical Chemistry, Vol. 3 No. 1, 2013, pp. 40-48. doi: 10.4236/ojpc.2013.31006.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] S. A. E. Marras, F. R. Kramer and S. Tyagi, “Efficiencies of Fluorescence Resonance Energy Transfer and Contact-Mediated Quenching in Oligonucleotide Probes,” Oxford University Press, Nucleic Acids Research, Vol. 30, No. 21, 2002, p. e122. doi:10.1093/nar/gnf121
[2] J. A. Kloepfer, S. E. Bradforth and J. L. Nadeau, “Photophysical Properties of Biological Compatibility CdSe Quantum Dot Structures,” Journal of Physical Chemistry B, Vol. 109, No. 20, 2005, pp. 9996-10003, doi:10.1021/jp044581g
[3] X. H. Gao, C. W. Warren Chan and S. Nie, “Quantum-Dot Nanocrystals for Ultrasensitive Biological Labeling and Multicolour Optical Encoding,” Journal of Biomedical Optics, Vol. 7, No. 4, 2002, pp. 532-537. doi:10.1117/1.1506706
[4] K. E. Sapsford, L. Berti and I. L. Medintz, “Materials for Fluorescence Resonance Energy Transfer Analysis: Beyond Traditional Donor-Acceptor Combinations,” Angewandte Chemie International Edition, Vol. 45, No. 28, 2006, pp. 4562-4588, doi:10.1002/anie.200503873
[5] A. Henglein, “Small-Particle Research: Physicochemical Properties of Extremely Small Colloidal Metal and Semiconductor Particles,” Chemical Reviews, Vol. 89, No. 8, 1989, pp. 1861-1873. doi:10.1021/cr00098a010
[6] A. P. Alivisatos, “Semiconductor Clusters, Nanocrystals, and Quantum Dots,” Science, Vol. 271, No. 5251, 1996, pp. 933-937. doi:10.1126/science.271.5251.933
[7] B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen and M. G. Bawendi, “(CdSe)ZnS Core-Shell Quantum Dots: Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites,” Journal of Physical Chemistry B, Vol. 101, No. 46, 1997, pp. 9463-9475,
[8] T. Pons, I. L. Medintz, X. Wang, D. S. English, and H. Mattoussi, “Solution-Phase Single Quantum Dot Fluorescence Resonance Energy Transfer,” Journal of American Chemical Society, Vol. 128, No. 47, 2006, pp. 15324-15331. doi:10.1021/ja0657253
[9] J. N. Miller, “Fluorescence Energy Transfer Methods in Bioanalysis,” Analyst, Vol. 130, No. 3, 2005, pp. 265-270. doi:10.1039/b314346p
[10] S. Mayor, and Bilgrami, S. (2007). “Fretting about FRET in Cell and Structural Biology,” In: D. Zuk, Ed., Evaluating Techniques in Biochemical Research, Cell Press. Cambridge.
[11] U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke and T. Nann, “Quantum Dots versus Organic Dyes as Fluorescent Labels,” Nature Methods, Vol. 5, No. 9, 2008, pp. 763-775. doi:10.1038/nmeth.1248
[12] Lianhua Qu and Xiaogang Peng, “Control of Photoluminescence Properties of CdSe Nanocrystals in Growth,” Journal of American Chemical Society, Vol. 124, No. 9, 2002, pp. 2049-2055. doi:10.1021/ja017002j
[13] T. Forster, “10th Spiers Memorial Lecture. Transfer mechanics of Electronic Excitation,” Discussions of the Faraday Society, Vol. 27, 1959, pp. 7-17. doi:10.1039/df9592700007
[14] A. M. Dennis and G. Bao, “Quantum Dot-Fluorescent Protein Pairs as Novel Fluorescence Resonance Energy Transfer Probes,” Nano Letters, Vol. 8, No. 5, 2008, pp. 1439-1445. doi:10.1021/nl080358+
[15] S. V. Dezhurov, I. Y. Volkova and M. S. Wakstein, “FRET-Based Biosensor for Oleic Acid in Nanomolar Range with Quantum Dots as an Energy Donor,” Bioconjugate Chemistry, Vol. 22, No. 3, 2011, pp, 338-345.
[16] D. M. Willard, L. L. Carillo, J. Jung and A. V. Orden, “CdSe-ZnS Quantum Dots as Resonance Energy Transfer Donors in a Model Protein-Protein Binding Assay,” Nano Letters, Vol. 1, No. 9, 2001, pp. 469-474. doi:10.1021/nl015565n
[17] G. Morello, M. Anni, P. D. Cozzoli, L. Manna, R. Cingolani and M. De Giorgi, “Picosecond Photoluminescence Decay Time in Colloidal Nanocrystals: The Role of Intrinsic and Surface States,” Journal of Physical Chemistry C, Vol. 111, No. 28, 2007, pp. 10541-10545. doi:10.1021/jp072783h
[18] E. Mutlugün, S. Nizamo?lu and H. Volkan Demirb, “Highly Efficient Nonradiative Energy Transfer Using Charged CdSe/ZnS Nanocrystals for Light-Harvesting in Solution,” Applied Physics Letters, Vol. 95, No. 3, 2009, p. 33106. doi:10.1063/1.3182798
[19] M. Zhou and I. Ghosh, “Current Trends in Peptide Science Quantum Dots and Peptides: A Bright Future Together,” Biopolymers (PeptideScience), Vol. 88, No. 3, 2006, pp. 325-339. doi:10.1002/bip.20655
[20] T. Forster, “Zwischenmolekulare Energiewanderung und Fluoreszenz,” Annal Physics, Vol. 437, No. 1-2, 1948, pp, 55-75.
[21] R. M. Clegg, “Fluorescence Resonance Energy Transfer,” In: X.-F. Wang and B. Herman, Eds., Fluorescence Imaging Spectroscopy and Microscopy, 1996, Wiley, New York, pp. 179-252.
[22] J. Lackowicz, “Principles of Fluorescence Spectroscopy,” 3rd Edition, Springer Science and Business Media, LLC, New York.
[23] R C. Somers, M. G. Bawendi and D. G. Nocera, “CdSe Nanocrystal Based Chem-/ Bio-Sensors,” Chemical Society Reviews, Vol. 36, No. 4, 2007, pp. 579-591. doi:10.1039/b517613c
[24] A. L. Rogach, T. A. Klar, J. M. Lupton, A. Meijerink and J. Feldmann, “Energy Transfer with Semiconductor Nanocrystals,” Journal of Materials Chemistry, Vol. 19, 2009, pp. 1208-1221. doi:10.1039/b812884g
[25] A. R. Clapp, I. L. Medintz and H. Mattoussi, “Forster Resonance Energy Transfer Investigations Using Quantum-Dot Fluorophores,” ChemPhysChem, Vol. 7, No. 1, 2006, pp. 47-57. doi:10.1002/cphc.200500217
[26] C. S. Yun, A. Javier, T. Jennings, M. Fisher, S. Hira, S. Peterson, B. Hopkins, N. O. Reich and G. F. Strouse, “Nanometal Surface Energy Transfer in Optical Rulers, Breaking the FRET Barrier,” Journal of American Chemical Society, Vol. 127, No. 9, 2005, pp. 3115-3119. doi:10.1021/ja043940i
[27] Aaron R. Clapp, Igor L. Medintz, J. Matthew Mauro, Brent R. Fisher, Moungi G. Bawendi and Hedi Mattoussi, “Fluorescence Resonance Energy Transfer Between Quantum Dot Donors and Dye-Labeled Protein Acceptors,” Journal of American Chemical Society, Vol. 126, No. 1, 2004, pp. 301-310. doi:10.1021/ja037088b
[28] V. R. Hering, G. Gibson, R I. Schumacher, A. Faljoni-Alario and M. J. Politi, “Energy Transfer between CdSe/ZnS Core/Shell Quantum Dots and Fluorescent Proteins,” Bioconjugate Chemistry, Vol. 18, No. 6, 2007, pp. 1705-1708. doi:10.1021/bc700147j
[29] H. Lu, O. Schops, U. Woggon and C. M. Niemeyer, “Self-Assembled Donor Comprising Quantum Dots and Fluorescent Proteins for Long-Range Fluorescence Resonance Energy Transfer,” Journal American Chemical Society, Vol. 130, No. 14, 2008, pp. 4815-4827. doi:10.1021/ja078243f
[30] H. Mattoussi, J. Matthew Mauro, E. R. Goldman, G. P. Anderson, V. C. Sundar, F. V. Mikulec and M. G. Bawendi, “Self-Assembly of CdSe-ZnS Quantum Dot Bioconjugates Using an Engineered Recombinant Protein,” Journal American Chemical Society, Vol. 122, No. 49, 2000, pp. 12142-12150. doi:10.1021/ja002535y
[31] I.L. Medintz, T. Pons, K. Susumu, K. Boeneman, A.M. Dennis, D. Farrell, J. R. Deschamps, J. S. Melinger, G. Bao and H. Mattoussi, “Resonance Energy Transfer Between Luminescent Quantum Dots and Diverse Fluorescent Protein Acceptors,” Journal of Physical Chemistry C, Vol. 113, No. 43, 2009, pp. 18552-18561. doi:10.1021/jp9060329
[32] J.-H. Wang, T.-C. Liu, Y.-C. Cao, X.-F. Hua, H.-Q. wang, H.-L. Zhang, X.-Q. Li and Y.-D. Zhao, “Fluorescence Resonance energy transfer between FITC and water-soluble CdSe/ZnS quantum dots,” Colloids & Surfaces A: Physicochem. Engineering Aspects, Vol. 302, No. 1, 2007, pp. 168-173. doi:10.1016/j.colsurfa.2007.02.018
[33] J. F. Callan, A. P. De Silva, R. C. Mulrooney and B. Mc Caugha, “Luminescent Sensing with Quantum Dots,” Journal of Inclusion Phenomena and Macrocyclic Chemistry, Vol. 58, No. 3-4, 2007, pp. 257-262. doi:10.1007/s10847-006-9152-8
[34] A. M. Smith, H. Duan, A. M. Mohs and S. Nie, “Bioconjugated Quantum Dots for in Vivo Molecular and Cellular Imaging,” Advanced Drug Delivery Reviews, Vol. 60, No. 11, 2008, pp. 1226-1240. doi:10.1016/j.addr.2008.03.015
[35] J. W. Borst and A. J. W. G. Visser, “Fluorescence Lifetime Imaging Micrsopey in Life Sciences,” Measurement Science and Technology, Vol. 21, No. 10, 2010, p. 102002. doi:10.1088/0957-0233/21/10/102002
[36] R. S. Knox and H. V. Amerongen, “Refractive Index Dependence of the Forster Resonance Excitation Transfer Rate,” Journal of Physical Chemistry B, Vol. 106, No. 20, 2002, pp. 5289-5293. doi:10.1021/jp013927+
[37] A. Iqbal, S. Arslan, B. Okumus, T. J. Wilson, G. Giraud, D. G. Norman, T. Ha and D. M. Lilley, “Orientation Dependence in Fluorescent Energy Transfer Between Cy3 and Cy5 Terminally Attached to Double-Stranded Nucleic Acids,” Proceedings of the National Academy of Sciences, Vol. 105, No. 32, 2008, pp. 11176-11181.
[38] R. Kumaran and P. Ramamurthy, “PET Suppression Acridinedione Dyes by Urea Derivatives in Water and Methanol,” Journal of Physical Chemistry B, Vol. 110, No. 47, 2006, pp. 23783-23789. doi:10.1021/jp0628378
[39] Y. Ren, Q. Xin, X.-T. Tao, L. Wang, X.-Q. Yu, J.-X. Yang and M.-H. Jiang, “Novel Multibranched Organic Compounds with Enhanced Two-Photon Absorption Benefiting from the Strong Electronic Coupling,” Chemical Physics Letters, Vol. 414, No. 1-3, 2005, pp. 253-258. doi:10.1016/j.cplett.2005.08.041
[40] M. Grabolle, M. Spieles, V. Lesnyak, N. Gaponik, A. Eychmuller and U. Resch-Genger, “Determination of the Fluorescence Quantum Yield of Quantum Dots: Suitable Procedures and Achievable Uncertainties,” Analytical Chemistry, Vol. 81, No. 15, 2009, pp. 6285-6294. doi:10.1021/ac900308v
[41] X. Wang, L. Qu, J. Zhang, X. Peng and M. Xiao, “Surface-Related Emission in Highly Luminescent CdSe Quantum Dots,” Nano Letters, Vol. 3, No. 8, 2003, pp. 1103-1106. doi:10.1021/nl0342491
[42] J.-Y. Zhang, X.-Y. Wang and M. Xiao, “Modification of Spontaneous Emission from CdSe/CdS Quantum Dots in the Presence of a Semiconductor Interface,” Optics Letters, Vol. 27, No. 14, 2002, pp. 1253-1255. doi:10.1364/OL.27.001253
[43] M. G. Bawendi, P. J. Carroll, William L. Wilson and L. E. Brus, “Luminescence Properties of CdSe Quantum Crystallites: Resonance between Interior and Surface Localized States,” Journal of Chemical Physics, Vol. 96, No. 946, 1992, pp. 946-954. doi:10.1063/1.462114
[44] A. L. Rogach (Ed), Semiconductor Nanocrystal Quantum Dots, Synthesis, Assembly and Applications, Springer Wein, New York, 2008. doi:10.1007/978-3-211-75237-1
[45] T. Pons, I. L. Medintz, M. Sykora and H. Mattoussi, “Spectrally Resolved Energy Transfer Using Quantum Dot Donor: Ensemble and Single Molecule Photoluminescence Studies,” Physical Review B, Vol. 73, No. 24, 2006, pp. 245302. doi:10.1103/PhysRevB.73.245302
[46] S. Dayal and C. Burda, “Surface Effects on Quantum-Dot Based Energy Transfer,” Journal of American Chemical Society, Vol. 129, No. 25, 2007, pp. 7977-7981. doi:10.1021/ja071457c
[47] A. K. Parchur, A. I. Prasad, A. A. Ansari, S. B. Raia and R. S. Ningthoujam, “Luminescence Properties of Tb3+-Doped CaMoO4 Nanoparticles: Annealing Effect, Polar Medium Dispersible, Polymer Film and Core-Shell Formation,” Dalton Transactions, Vol. 41, No. 36, 2012, pp. 11032-11045. doi:10.1039/c2dt31257c

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.