Crystal and Molecular Structure of 2-Amino-3-Ethyl Carboxamido-4-Metyl-5-Carboxy Ethyl Thiophene


The crystal and molecular structure of 2-Amino-3-ethyl carboxamido-4-methyl-5-carboxy ethyl thiophene (C11H16N2O3S) has been investigated from single crystal X-ray diffraction data. The primary focus is to investigate the molecular geometry of this compound in the solid state along with the associated inter and intra-molecular hydrogen bonding and related weak interactions present in this molecule. This compound crystallizes in the monoclinic space group P21/c with cell parameters, a = 8.1344(3) , b = 13.7392(4) , c = 11.4704(4) , β = 100.769(2), V = 1259.36 (7) 3, D = 1.352 g·cm–3, Z = 4. The molecular geometry is stabilized by intra-molecular N-H…O=C and C-H…O interactions along with intramolecular C-H…N and C-H…O interactions which contribute towards the stability of the crystal packing.

Share and Cite:

Dey, D. , Prakash, V. , Vasu,  . , Saravanan, J. and Chopra, D. (2012) Crystal and Molecular Structure of 2-Amino-3-Ethyl Carboxamido-4-Metyl-5-Carboxy Ethyl Thiophene. Crystal Structure Theory and Applications, 1, 92-96. doi: 10.4236/csta.2012.13017.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] [1] R. Mishra, K. K. Jha, S. Kumar and I. Tomer, “Synthesis, Properties and Biological Activity of Thiophene: A Review,” Der Pharma Chemica, Vol. 3, No. 4, 2011, p. 38.
[2] G. Darshan, D. Chopra and J. Saravanan, “N-(X-Methylphenyl)-2-{(Z)-[(2,3,4-trimethoxyphenyl)methylidene]amino}-4,5,6,7-tetrahydro-1-benzothiophene-3-carboxamide, where X = 2 and 3,” Acta Crystallographica, Vol. C66, No. 12, 2010, p. 571.
[3] Vasu, K. A. Nirmala, D. Chopra, S. Mohan and J. Saravanan, Acta Crystallographica, Vol. C60, No. 11, 2004, p. 786.
[4] Vasu, K. A. Nirmala, D. Chopra, S. Mohan and J. Saravanan, Acta Crystallographica, Vol. C60, No. 9, 2004, p. 636.
[5] Vasu, K. A. Nirmala, D. Chopra, S. Mohan and J. Saravanan, Acta Crystallographica, Vol. E60, No. 2, 2004, p. 236.
[6] H. S. O. Chan and S. C. Ng, “Synthesis, Characterization and Applications of Thiophene-Based Functional Polymers,” Progress in Polymer Science, Vol. 23, No. 7, 1998, pp. 1167-1231. doi:10.1016/S0079-6700(97)00032-4
[7] G. M. Sheldrick, “SHELXL97, Program for Crystal Structure Refinement,” University of Gottingen, 1997.
[8] L. J. Farrugia, “WinGX Suite for Small-Molecule Single-Crystal Crystallography,” Journal of Applied Crystallography, Vol. 32, No. 4, 1999, pp. 837-838. doi:10.1107/S0021889899006020
[9] G. M. Sheldrick, “A Short History of SHELX,” Acta Crystallographica, Vol. A64, No.1, 2008, p. 112.
[10] L. J. Farrugia, “ORTEP-3 for Windows—A Version of ORTEP-III with a Graphical User Interface (GUI),” Journal of Applied Crystallography, Vol. 30, No. 5, 1997, p. 565. doi:10.1107/S0021889897003117
[11] C. F. Macrae, I. J. Bruno, J. A. Chisholm, P. R. Edgington, P. McCabe, E. Pidcock, L. Rodriguez-Monge, R. Taylor, J. Streek and P. A. Wood, “Mercury CSD 2.0— New Features for the Visualization and Investigation of Crystal Structures,” Journal of Applied Crystallography, Vol. 41, No. 2, 2008, pp. 466-470. doi:10.1107/S0021889807067908
[12] M. Nardelli, “PARST95—An Update to PARST: A System of Fortran Routines for Calculating Molecular Structure Parameters from the Results of Crystal Structure Analyses,” Journal of Applied Crystallography, Vol. 28, No. 5, 1995, p. 569. doi:10.1107/S0021889895007138
[13] A. L. Spek, “PLATON-a Multipurpose Crystallographic Tool,” Utrecht University, 2002.
[14] I. Dance, “Distance Criteria for Crystal Packing Analysis of Supramolecular Motifs,” New Journal of Chemistry, Vol. 27, No. 1, 2003, pp. 22-27. doi:10.1039/b206867b
[15] Turbomole V6.3 2011, “A Development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989-2007, Turbomole GmbH,” 2007.
[16] G. R. Desiraju and T. Steiner, “The Weak Hydrogen Bond in Structural Chemistry and Biology,” Oxford University Press, Oxford, 1999.
[17] G. R. Desiraju, “C–H...O and Other Weak Hydrogen Bonds. From Crystal Engineering to Virtual Screening,” Chemical Communication, 2005, pp. 2995-3001. doi:10.1039/b504372g
[18] G. R. Desiraju, “Hydrogen Bridges in Crystal Engineering: Interactions without Borders,” Accounts of Chemical Research, Vol. 35, No. 7, 2002, pp. 565-573. doi:10.1021/ar010054t
[19] S. S. Kuduva, D. C. Craig, A. Nangia and G. R. Desiraju, “Cubanecarboxylic Acids. Crystal Engineering Considerations and the Role of C—H...O Hydrogen Bonds in Determining O—H...O Networks,” Journal of the American Chemial Society, Vol. 121, No. 9, 1999, p. 1936. doi:10.1021/ja981967u
[20] T. Steiner, Chemical Communication, No. 8, 1997, pp. 727-734. doi:10.1039/a603049a
[21] G. R. Desiraju, “The C—H...O Hydrogen Bond: Structural Implications and Supramolecular Design,” Accounts of Chemical Research, Vol. 29, No. 9, 1996, pp. 441-449. doi:10.1021/ar950135n
[22] CSD Version 5.33, “The Following Constraints Were Applied: No Refcode Restrictions Applied, 3D Coordinates Determined, R Factor ≤ 0.1, No Errors, Not Polymeric, No Ions, Only Organics,” 2011.
[23] I. F. Cottrell, A. R. Cowley, L. J. Croft, L. Hymns, M. G. Moloney, E. J. Nettleton, H. K. Smithies and A. L. Thompson, “Acyloxylactonisations Mediated by Lead Tetracarboxylates,” Tetrahedron, Vol. 65, No. 12, 2009, pp. 2537-2550. doi:10.1016/j.tet.2009.01.042
[24] R. W. Gable, M. J. Laws, C. H. Schiesser, Acta Crystallographica, Vol. C53, No. 5, 1997, p. 641.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.