Effects of Plasma Proteins on Staphylococcus epidermidis RP62A Adhesion and Interaction with Platelets on Polyurethane Biomaterial Surfaces


Plasma proteins influence the initial adhesion of bacteria to biomaterials as well as interactions between bacteria and blood platelets on blood-contacting medical devices. In this paper, we study the effects of three human plasma proteins, albumin, fibrinogen (Fg), and fibronectin (Fn), on the adhesion of Staphylococcus epidemidis RP62A to polyurethane biomaterial surfaces, and also address how these three proteins affect bacterial interactions with human platelets on materials. Measurements of bacterial adhesion on polymer surfaces pre-adsorbed with a variety of proteins demonstrate that Fn leads to increased bacterial adhesion, with the order of effectiveness being Fn 》Fg > albumin. Immuno-AFM (atomic force microscopy) was used to assess the Fn adsorption/activity on surfaces and bacterial cell membranes by looking at molecular scale events. A correlation between molecular scale Fn adsorption and macroscale bacterial adhesion was observed, with an increased numbers of Fn-receptor recognition events measured on cell surfaces as compared to Fg-receptor recognition events, suggesting Fn is an important protein in bacterial adhesion. Monoclonal antibodies recognizing either the carboxyl-terminus or amino-terminus of Fn were coupled to AFM probes and used to assess the orientation of Fn adsorbed on a surface, with an increased amount of Fn carboxyl-terminus availability corresponding to higher bacterial adhesion. Interactions between bacteria and platelets were demonstrated with fluorescence and AFM imaging on the polyurethane surfaces, with albumin inhibiting bacteria-platelet interaction and platelet activation, and both Fg and Fn promoting adhesion of bacteria to platelets and apparent platelet activation, resulting in bacteria/platelet aggregation.

Share and Cite:

L. Xu and C. Siedlecki, "Effects of Plasma Proteins on Staphylococcus epidermidis RP62A Adhesion and Interaction with Platelets on Polyurethane Biomaterial Surfaces," Journal of Biomaterials and Nanobiotechnology, Vol. 3 No. 4A, 2012, pp. 487-498. doi: 10.4236/jbnb.2012.324050.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: A common cause of persistent infections. Science. 1999;284:1318-22. doi:10.1126/science.284.5418.1318
[2] Bryers JD. Medical Biofilms. Biotechnology and Bioengineering. 2008;100:1-18. doi:10.1002/bit.21838
[3] Lowy FD. Antimicrobial resistance: the example of Staphylococcus aureus. J Clin Invest. 2003;111:1265-73.
[4] Costa AR, Henriques M, Oliveira R, Azeredo J. The role of polysaccharide intercellular adhesin (PIA) in Staphylococcus epidermidis adhesion to host tissues and subsequent antibiotic tolerance. European Journal of Clinical Microbiology & Infectious Diseases. 2009;28:623-9. doi:10.1007/s10096-008-0684-2
[5] Gutierrez-Gonzalez R, Boto GR, Perez-Zamarron A. Cerebrospinal fluid diversion devices and infection. A comprehensive review. European Journal of Clinical Microbiology & Infectious Diseases. 2012;31:889-97. doi:10.1007/s10096-011-1420-x
[6] Johnson B, Starks I, Bancroft G, Roberts PJ. The effect of care bundle development on surgical site infection after hemiarthroplasty: An 8-year review. Journal of Trauma and Acute Care Surgery. 2012;72:1375-9.
[7] Padera RF. Infection in ventricular assist devices: the role of biofilm. Cardiovascular Pathology. 2006;15:264-70. doi:10.1016/j.carpath.2006.04.008
[8] Fey PD, Olson ME. Current concepts in biofilm formation of Staphylococcus epi-dermidis. Future Microbiology. 2010;5:917-33. doi:10.2217/fmb.10.56
[9] Kerrigan SW, Clarke N, Loughman A, Meade G, Foster TJ, Cox D. Molecular basis for Sta-phylococcus aureus- mediated platelet aggregate formation under arterial shear in vitro. Arteriosclerosis Thrombosis and Vascular Biology. 2008;28:335-40. doi:10.1161/ATVBAHA.107.152058
[10] Obrien L, Kerrigan SW, Kaw G, Hogan M, Penades J, Litt D, et al. Multiple mechanisms for the activation of human platelet aggregation by Staphylococcus aureus: roles for the clumping factors ClfA and ClfB, the serine-aspartate repeat protein SdrE and protein A. Molecular Microbiology. 2002;44:1033-44. doi:10.1046/j.1365-2958.2002.02935.x
[11] Fitzgerald JR, Loughman A, Keane F, Brennan M, Knobel M, Higgins J, et al. Fibronectin-binding proteins of Staphylococcus aureus mediate activation of human platelets via fibrinogen and fibronectin bridges to integrin GPIIb/IIIa and IgG binding to the Fc gamma RIIa receptor. Molecular Microbiology. 2006;59:212-30. doi:10.1111/j.1365-2958.2005.04922.x
[12] Cox D, Kerrigan SW, Watson SP. Platelets and the innate immune system: mechanisms of bacterial-induced platelet activation. Journal of Thrombosis and Haemostasis. 2011;9:1097-107. doi:10.1111/j.1538-7836.2011.04264.x
[13] Johnson MA, Ross JM. Staphylococcal presence alters thrombus formation under physiological shear conditions in whole blood studies. Annals of Biomedical Engineering. 2008;36:349-55. doi:10.1007/s10439-007-9434-3
[14] Shannon O, Hertzen E, Norrby-Teglund A, Morgelin M, Sjobring U, Bjorck L. Severe streptococcal infection is associated with M protein-induced platelet activation and thrombus formation. Molecular Microbiology. 2007;65: 1147-57. doi:10.1111/j.1365-2958.2007.05841.x
[15] MacKintosh EE, Patel JD, Marchant RE, Anderson JM. Effects of biomaterial surface chemistry on the adhesion and biofilm formation of Staphylococcus epidermidis in vitro. J Biomed Mater Res Part A. 2006;78A:836-42. doi:10.1002/jbm.a.30905
[16] Vacheethasanee K, Temenoff JS, Higashi JM, Gary A, Anderson JM, Bayston R, et al. Bacterial surface properties of clinically isolated Staphylococcus epider-midis strains determine adhesion on polyethylene. Journal of Biomedical Materials Research. 1998;42:425-32. doi:10.1002/(SICI)1097-4636(19981205)42:3<425::AID-JBM12>3.0.CO;2-F
[17] Tegoulia VA, Cooper SL. Staphylococcus aureus adhesion to self-assembled monolayers: effect of surface chemistry and fibrinogen presence. Colloids and Surfaces B-Biointerfaces. 2002;24:217-28. doi:10.1016/S0927-7765(01)00240-5
[18] Ardehali R, Shi L, Janatova J, Mohammad SF, Burns GL. The inhibitory activity of serum to prevent bacterial adhesion is mainly due to apo-transferrin. J Biomed Mater Res Part A. 2003;66A:21-8. doi:10.1002/jbm.a.10493
[19] Patel JD, Ebert M, Ward R, Anderson JM. S-epidermidis biofilm formation: Effects of biomaterial surface chemistry and serum proteins. Journal of Biomedical Materials Research Part A. 2007;80A:742-51. doi:10.1002/jbm.a.31103
[20] Hartford O, O'Brien L, Schofield K, Wells J, Foster TJ. The Fbe (SdrG) protein of Staphylococcus epidermidis HB promotes bacterial adherence to fibrinogen. Microbiology-Sgm. 2001;147:2545-52.
[21] Hussain M, Heilmann C, Peters G, Herrmann M. Teichoic acid enhances adhesion of Staphylococcus epidermidis to immobilized fibronectin. Microbial Pathogenesis. 2001;31:261-70. doi:10.1006/mpat.2001.0469
[22] Schroeder AC, Schmidbauer JM, Sobke A, Seitz B, Ruprecht KW, Herrmann M. Influence of fibronectin on the adherence of Staphylococcus epidermidis to coated and uncoated intralocular lenses. Journal of Cataract and Refractive Surgery. 2008;34:497-504. doi:10.1016/j.jcrs.2007.10.042
[23] Dunne WM, Burd EM. Fibronectin and proteolytic fragments of fibronectin interfere with the adhesion of Staphylococcus epidermidis to plastic. Journal of Applied Microbiology.1993;74:411-6. doi:10.1111/j.1365-2672.1993.tb05147.x
[24] Galliani S, Viot M, Cremieux A, Vanderauwera P. Early adhesion of bacteremic strains of Staphylococcus epidermidis to polystyrene-influence of hydrophobicity, slime production, plasma albumin, fibrinogen, and fibronectin Journal of Laboratory and Clinical Medicine. 1994;123: 685-92.
[25] Linnes JC, Mikhova K, Bryers JD. Adhesion of Staphylococcus epidermidis to biomaterials is inhibited by fibronectin and albumin. Journal of Biomedical Materials Research Part A. 2012;100A:1990-7. doi:10.1002/jbm.a.34036
[26] Wann ER, Gurusiddappa S, Hook M. The fibronectin-binding MSCRAMM FnbpA of Staphylococcus aureus is a bifunctional protein that also binds to fibrinogen. Journal of Biological Chemistry. 2000;275: 13863-71. doi:10.1074/jbc.275.18.13863
[27] Hartford OM, Wann ER, Hook M, Foster TJ. Identification of residues in the Staphylo-coccus aureus fibrinogen-binding MSCRAMM clumping factor A (ClfA) that are important for ligand binding. Journal of Biological Chemistry. 2001;276:2466-73. doi:10.1074/jbc.M007979200
[28] Williams RJ, Henderson B, Sharp LJ, Nair SP. Identification of a Fibronectin-Binding Protein from Staphylococcus epidermidis. Infect Immun. 2002;70:6805-10. doi:10.1128/IAI.70.12.6805-6810.2002
[29] Arrecubieta C, Toba FA, von Bayern M, Akashi H, Deng MC, Naka Y, et al. SdrF, a Staphylococcus epidermidis Surface Protein, Contributes to the Initiation of Ventricular Assist Device Driveline-Related Infections. Plos Pathogens. 2009;5.
[30] Davis SL, Gurusiddappa S, McCrea KW, Perkins S, Hook M. SdrG, a fibrinogen-binding bacterial adhesin of the microbial surface components recognizing adhesive matrix molecules subfamily from Staphylococcus epidermidis, targets the thrombin cleavage site in the B beta chain. Journal of Biological Chemistry. 2001;276: 27799-805. doi:10.1074/jbc.M103873200
[31] Arrecubieta C, Lee MH, Macey A, Foster TJ, Lowy FD. SdrF, a Staphylococcus epi-dermidis surface protein, binds type I collagen. Journal of Biological Chemistry. 2007;282: 18767-76. doi:10.1074/jbc.M610940200
[32] Christner M, Franke GC, Schommer NN, Wendt U, Wegert K, Pehle P, et al. The giant extracellular matrix-binding protein of Staphylococcus epider-midis mediates biofilm accumulation and attachment to fibronectin. Molecular Microbiology. 2010;75:187-207. doi:10.1111/j.1365-2958.2009.06981.x
[33] Brennan MP, Loughman A, Devocelle M, Arasu S, Chubb AJ, Foster TJ, et al. Elucidating the role of Staphylococcus epidermidis serine-aspartate repeat protein G in platelet activation. Journal of Thrombosis and Haemostasis. 2009;7:1364-72. doi:10.1111/j.1538-7836.2009.03495.x
[34] Katsikogianni M, Missirlis YF. Concise review of mechanisms of bacterial adhesion to biomaterials and of techniques used in estimating bacteria-material interactions. European Cells & Materials Journal 2004;8:37-57.
[35] Mendez-Vilas A, Gallardo-Moreno AM, Gonzalez-Martin ML. Nano-mechanical exploration of the surface and sub-surface of hydrated cells of Staphylococcus epidermidis. Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology. 2006;89:373-86. doi:10.1007/s10482-005-9041-y
[36] Mendez-Vilas A, Gallardo-Moreno AM, Gonzalez-Martin ML, Calzado-Montero R, Nuevo MJ, Bruque JM, et al. Surface characterisation of two strains of Staphylococcus epidermidis with different slime-production by AFM. Applied Surface Science. 2004;238:18-23. doi:10.1016/j.apsusc.2004.05.183
[37] Liu Y, Strauss J, Camesano TA. Adhesion forces between Staphylococcus epider-midis and surfaces bearing self-assembled monolayers in the presence of model proteins. Biomaterials. 2008;29:4374-82. doi:10.1016/j.biomaterials.2008.07.044
[38] Boks NP, Busscher HJ, van der Mei HC, Norde W. Bond-Strengthening in Staphylococcal Adhesion to Hydrophilic and Hydrophobic Surfaces Using Atomic Force Microscopy. Langmuir. 2008;24:12990-4. doi:10.1021/la801824c
[39] Jarvis RA, Bryers JD. Effects of controlled fibronectin surface orientation on subsequent Staphylococcus epidermidis adhesion. Journal of Biomedical Materials Research Part A. 2005;75A:41-55. doi:10.1002/jbm.a.30404
[40] Chowdhury PB, Luckham PF. Probing recognition process between an antibody and an antigen using atomic force microscopy. Colloids and Surfaces a-Physicochemical and Engineering Aspects. 1998;143: 53-7. doi:10.1016/S0927-7757(98)00408-7
[41] Agnihotri A, Siedlecki CA. Adhesion mode atomic force microscopy study of dual component protein films. Ultramicroscopy. 2005;102:257-68. doi:10.1016/j.ultramic.2004.10.006
[42] Soman P, Rice Z, Siedlecki CA. Measuring the Time-Dependent Functional Activity of Adsorbed Fibrinogen by Atomic Force Microscopy. Langmuir. 2008;24:8801-6. doi:10.1021/la801227e
[43] Pavithra D, Doble M. Biofilm formation, bacterial adhesion and host response on polymeric implants-issues and prevention. Biomedical Materials. 2008;3.
[44] Chiumiento A, Lamponi S, Barbucci R. Role of fibrinogen conformation in platelet activation. Biomacro-molecules. 2007;8:523-31. doi:10.1021/bm060664m
[45] Lee I, Marchant RE. Molecular interaction studies of hemostasis: fibrinogen ligand-human platelet receptor interactions. Ultramicroscopy. 2003;97:341-52. doi:10.1016/S0304-3991(03)00059-7
[46] Garcia AJ, Vega MD, Boettiger D. Modulation of cell proliferation and differentiation through substrate-dependent changes in fibronectin conformation. Molecular Biology of the Cell. 1999;10:785-98.
[47] Schwarz-Linek U, Hook M, Potts JR. The molecular basis of fibronectin-mediated bacterial adherence to host cells. Molecular Microbiology. 2004;52:631-41. doi:10.1111/j.1365-2958.2004.04027.x
[48] Kerdudou S, Laschke MW, Sinha B, Preissner KT, Menger MD, Herrmann M. Fibronectin binding proteins contribute to the adherence of Staphylococcus aureus to intact endothelium in vivo. Thrombosis and Haemostasis. 2006;96:183-9.
[49] Simpson KH, Bowden MG, Hook M, Anvari B. Measurement of adhesive forces between S-epidermidis and fibronectin-coated surfaces using optical tweezers. Lasers in Surgery and Medicine. 2002;31:45-52. doi:10.1002/lsm.10070
[50] Xu CP, Boks NP, de Vries J, Kaper HJ, Norde W, Busscher HJ, et al. Staphylococcus aureus-Fibronectin Interactions with and without Fibronectin-Binding Proteins and Their Role in Adhesion and Desorption. Applied and Environmental Microbiology. 2008;74:7522-8. doi:10.1128/AEM.00948-08
[51] Bustanji Y, Arciola CR, Conti M, Mandello E, Montanaro L, Samori B. Dynamics of the interaction between a fibronectin molecule and a living bacterium under mechanical force. Proceedings of the National Academy of Sciences of the United States of America. 2003;100: 13292-7. doi:10.1073/pnas.1735343100
[52] Henderson B, Nair S, Pallas J, Williams MA. Fibronectin: a multidomain host adhesin targeted by bacterial fibronectin-binding proteins. Fems Micro-biology Reviews. 2011;35:147-200. doi:10.1111/j.1574-6976.2010.00243.x
[53] Fitzgerald JR, Foster TJ, Cox D. The interaction of bacterial pathogens with platelets. Nature Reviews Microbiology. 2006;4:445-57. doi:10.1038/nrmicro1425

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.