Sol-Gel-Derived Porous Silica: Economic Synthesis and Characterization


Porous silica was synthesized via the sol-gel process using clay obtained locally from Ijero-Ekiti in Ekiti State, Nigeria and compared with silica synthesized under similar conditions from sodium metasilicate (Na2SiO3) obtained comer- cially. The clay was initially refluxed with sodium hydroxide (NaOH) for 2 hours to extract SiO2 to form Na2SiO3, which was subsequently hydrolyzed to form a gel. The gel obtained was washed with deionized water to get rid of im-purities, dried and calcined at 800°C for 3 hours. The obtained silica powders were characterized using atomic absorp-tion spectrophotometer, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM). Results showed that the vibrational modes and diffraction patterns of the silica derived from com-mercial Na2SiO3 and that prepared from clay were similar containing pure amorphous SiO2. The morphology of the commercially obtained silica showed better arrangement of particles and exhibited slightly lesser porosity (62.4%) compared to that derived from clay which had a porosity of 65.5%. The result indicates that clay has a potential for use as an environmentally safe and economic starting material for preparing porous silica instead of high quality precursors.

Share and Cite:

E. Essien, O. Olaniyi, L. Adams and R. Shaibu, "Sol-Gel-Derived Porous Silica: Economic Synthesis and Characterization," Journal of Minerals and Materials Characterization and Engineering, Vol. 11 No. 10, 2012, pp. 976-981. doi: 10.4236/jmmce.2012.1110098.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] F. He, R. X, Zhuo, L. J. Liu, D. B. Jin, J. Feng and X. L Wang, “Immobilized Lipase on Porous Silica Beads: Preparation and Application for Enzymatic Ring-Opening Polymerization of Cyclic Phosphate,” Reactive Func- tional Polymers, Vol. 47, No. 2, 2001, pp. 153-158. doi:10.1016/S1381-5148(01)00027-X
[2] K. W. Gallis, J. T. Araujo, K. J. Duff, J. G. Moore and C. C. Landry, “The Use of Mesoporous Silica in Liquid Chromatography,” Advanced Materials, Vol. 11, No. 17, 1999, pp. 1452-1455. doi:10.1002/(SICI)1521-4095(199912)11:17<1452::AID-ADMA1452>3.0.CO;2-R
[3] H. Bottcher, P. Slowik and W. Suss, “Sol-Gel Carrier Systems for Controlled Drug Delivery,” Journal of Sol- Gel Science and Technology, Vol. 13, No. 1-3, 1998, pp. 277-281. doi:10.1023/A:1008603622543
[4] K. Agrawal, G. Singh, D. Puri and S. Prakash, “Synthesis and Characterization of Hydroxyapatite Powder by Sol- Gel Method for Biomedical Application,” Journal of Minerals & Materials Characterization & Engineering, Vol. 10, No. 8, 2011, pp. 727-734.
[5] U. Damrau and V. Marsmann, “Hydrolysis of Oligomer Intermediates in the Sol-Gel Process,” Journal of Non- Crystalline Solids, Vol. 168, No. 1-2, 1994, pp. 42-48. doi:10.1016/0022-3093(94)90118-X
[6] R. F. S. Lenza and W. L. Vasconcelos, “Synthesis and Properties of Microporous Sol-Gel Silica Membranes,” Journal of Non-Crystalline Solids, Vol. 273, No. 1-3, 2000, pp. 164-169. doi:10.1016/S0022-3093(00)00163-0
[7] H. S. Mansur, R. L. Oréfice, W. L. Vasconcelos, R. F. S. Lenza and Z. Lobato, “Sol-Gel Silica Based Networks with Controlled Chemical Properties,” Journal of Non- Crystalline Solids, Vol. 273, No. 1-3, 2000, pp. 109-115. doi:10.1016/S0022-3093(00)00150-2
[8] N. K. Raman, T. L. Ward, C. J. Brinker, R. Sehgal, D. M. Smith, Z. Duan, M. Hampden-Smith, J. K. Bailey and T. J. Headly, “Catalyst Dispersion on Supported Ultrami- croporous Inorganic Membranes Using Derivatized Sily- lation Agents,” Applied Catalysis A: General, Vol. 96, No. 1, 1993, pp. 65-82. doi:10.1016/0926-860X(93)80007-D
[9] J. K. Kumar, R. Ramesh, G. Kanchana, P. Suresh and P. Sundaramoorthi, “Nucleation Reduction Strategy of SrNH4MgPO4 (Strontium Ammonium Magnesim Hydro- gen Phosphate) Crystal Growth in Silica Gel Medium and its Characterization Studies,” Journal of Minerals & Ma- terials Characterization & Engineering, Vol. 8, No. 6, 2009, pp. 439-453.
[10] R. S. A. de Lange, J. H. A. Hekkink, K. Keizer and A. J. Burggraaf, “Polymeric-Silica-Based Sols for Membrane Modification Application: Synthesis and Characterization with SAXS,” Journal of Non-Crystalline Solids, Vol. 191, No. 1-2, 1995, pp. 1-16. doi:10.1016/0022-3093(95)00291-X
[11] R. F. S. Lenza and W. L. Vasconcelos, “Structural Evolu- tion of Silica Modified with Formamide,” Materials Re- search, Vol. 4, No. 3, 2001, pp. 175-179. doi:10.1590/S1516-14392001000300006
[12] W. St?ber, A. Fink and E. Bohn, “Controlled Growth of Monodisperse Silica in the Micron Size Range,” Journal of Colloid and Interface Science, Vol. 26, No. 1, 1968, pp. 62-69. doi:10.1016/0021-9797(68)90272-5
[13] G. Buchel, M. Grun, K. K. Unger, A. Matsumoto and T Taszuo, “Tailored Synthesis of Nanostructured Silica: Control of Particle Morphology, Particle Size and Pore Size,” Supramolecular Science, Vol. 5, No. 3-4, 1998, pp. 253-259. doi:10.1016/S0968-5677(98)00016-9
[14] S. Han, W. Hou, W. Dang, J. Xua, J. Hu and D. Li, “Synthesis of Rod-like Mesoporous Silica Using Mixed Surfactants of Cetyltrimethylammonium Bromide and Cetyltrimethylammonium Chloride as Templates,” Mate- rials Letters, Vol. 57, No. 29, 2003, pp. 4520-4524. doi:10.1016/S0167-577X(03)00355-0
[15] E. R. Essien, O. A. Olaniyi, L. A. Adams and R. O. Shaibu, “Highly Porous Silica Network Prepared from Sodium Metasilicate,” Journal of Metals, Materials and Minerals, Vol. 21, No. 2, 2011, pp. 7-12.
[16] T. Witoon, M. Chareonpanich and J. Limtrakul, “Synthesis of Bimodal Porous Silica From Rice Husk Ash via Sol-Gel Process Using Chitosan as Template,” Materials Letters, Vol. 62, No. 10-11, 2008, pp. 1476-1479. doi:10.1016/j.matlet.2007.09.004
[17] N. Pijarn, A. Jaroenworaluck, W. Sunsaneeyametha and R. Stevens, “Synthesis and Characterization of Nanosized- Silica Gels Formed under Controlled Conditions,” Pow- der Technology, Vol. 203, No. 3, 2010, pp. 462-468. doi:10.1016/j.powtec.2010.06.007
[18] T. Li, T and T. Wang, “Preparation of Silica Aerogel from Rice Hull ash by Drying at Atmospheric Pressure,” Materials Chemistry and Physics, Vol. 112, No 2, 2008, pp. 398-401. doi:10.1016/j.matchemphys.2008.05.066
[19] R. R. Zaky, M. M. Hessien, A. A. El-Midany, M. H. Khedr, E. A. Abdel-Aal and K. A. El-Barawy, “Preparation of Silica Nanoparticles from Semi-burned Rice Straw Ash,” Powder Technology, Vol. 185, No. 1, 2008, pp. 31- 35. doi:10.1016/j.powtec.2007.09.012
[20] O. A. Olasupo and J. A. Omotoyinbo, “Moulding Proper- ties of a Nigerian Silica-Clay Mixture for Foundry Use,” Applied Clay Science, Vol. 45, No. 4, 2009, pp. 244-247. doi:10.1016/j.clay.2009.05.001
[21] P. M. Shewale, A. V. Rao, A. P. Rao and S. D. Bhagat, “Synthesis of Transparent Silica Aerogels with Low Den- sity and Better Hydrophobicity by Controlled Sol-Gel Route and Subsequent Atmospheric Pressure Drying,” Journal of Sol-Gel Science and Technology, Vol. 49, No. 3, 2009, pp. 285-292. doi:10.1007/s10971-008-1888-8
[22] F. Bauer, H. J. Gl?sel, U. Decker, H. Ernst, A. Freyer, E. Hartmann, V. Sauerland and R. Mehnert, “Trialkoxysi- lane Grafting onto Nanoparticles for the Preparation of Clear Coat Polyacrylate Systems with Excellent Scratch Performance,” Progress in Organic Coatings, Vol. 47, No. 2, 2003, pp. 147-153. doi:10.1016/S0300-9440(03)00117-6
[23] I. A. Rahman, P. Venjayakumaran, C. S. Sipaut, J. Ismail and C. K. Chee, “Effect of Drying Techniques on the Morphology of Silica Nanoparticles Synthesized Via Sol-Gel Process,” Ceramics International, Vol. 34, No. 8, 2008, pp. 2059-2066. doi:10.1016/j.ceramint.2007.08.014
[24] H. Wang, W. Zhong, Q. Du, Y. Yang, V. Okamoto and S. Inoue, “Novel Polyimide/Silica Nanohybrids from Water Glass,” Polymer Bulletin, Vol. 51, No. 1, 2003, pp. 63-68. doi:10.1007/s00289-003-0188-2
[25] U. K. Bangi, A. V. Rao and A. P. Rao, “A New Route for Preparation of Sodium-Silicate-Based Hydrophobic Silica Aerogels via Ambient-Pressure Drying,” Science and Technology of Advanced Materials, Vol. 9, No. 3, 2008, pp. 1-10. doi:10.1088/1468-6996/9/3/035006
[26] S. W. Hwang, T. Y. Kim and S. H. Hyun, “Effect of Sur- face Modification Conditions on the Synthesis of Mes- oporous Crack-Free Silica Aerogel Monoliths from Wa- terglass via Ambient-drying,” Microporous and Mesopor- ous Materials, Vol. 130, No. 1, 2010, pp. 295-302. doi:10.1016/j.micromeso.2009.11.024
[27] D. M. Schmidt, G. W. Scherer and J. M. Anderson, “Shrinkage During Drying of Silica Gel,” Journal of Non- Crystalline Solids, Vol. 188, No. 3, 1995, pp. 191-206. doi:10.1016/0022-3093(95)00187-5
[28] L. A. Adams, R. O. Shaibu, E. R. Essien and A. Oki, “Bentonite Clay and Waterglass Porous Monoliths via the Sol-Gel Process,” Journal of Metals, Materials and Min- erals, Vol. 21, No. 2, 2011, pp. 1-6.
[29] C. J. Lee, G. S. Kim and S. H. Hyun, “Synthesis of Silica Aerogels from Water Glass via New Modified Ambient Drying,” Journal of Materials Science, Vol. 37, No. 11, 2002, pp. 2237-2241. doi:10.1023/A:1015309014546
[30] P. Suresh, G. Kanchawa and P. Sundaramoorthi, “Growth and Characterization Studies of MnHP Single Crystal in Silica Gel Medium,” Journal of Minerals & Materials Characterization & Engineering, Vol. 8, No. 5, 2009, pp. 439-453.
[31] H. S. Mansur, R. L. Orefice and A. A. P. Mansur, “Char- acterization of Poly(vinyl alcohol)/Poly(ethylene glycol) Hydrogels and PVA-Derived Hybrids by Small-Angle Scattering and FTIR Spectroscopy,” Polymer, Vol. 45, No. 21, 2004, pp. 7193-7202. doi:10.1016/j.polymer.2004.08.036
[32] R. Almeida and G. Pantano, “Structural Investigation of Silica Gel Films by Infrared Spectroscopy,” Journal of Applied Physics, Vol. 68, No. 8, 1990, pp. 1225-1232. doi:10.1063/1.346213
[33] V. Lenza and W. L. Vasconcelos, “Preparation of Silica by Sol-gel Method Using Formamide,” Materials Re- search, Vol. 4, No. 3, 2001, pp. 189-194. doi:10.1590/S1516-14392001000300008
[34] C. Bhavornthanayod and P. Rungrojchaiporn, “Synthesis of Zeolite a Membrane from Rice Husk Ash,” Journal Metals, Materials and Minerals, Vol. 19, No. 2, 2009, pp. 79-83.
[35] P. Sooksaen, S. Suttiruengwong, K. Oniem, K. Ngamla- miad and J. Atireklapwarodom, “Fabrication of Porous Bioactive Glass-Ceramics via Decomposition of Natural Fibres,” Journal of Metals, Materials and Minerals, Vol. 18, No. 2, 2008, pp. 85-91.
[36] U. Kalapathy, A. Proctor and J. Shultz, “A Simple Method for Production of Pure Silica from Rice Hull Ash,” Bio- resource Technology, Vol. 73, No. 3, 2000, pp. 99-106. doi:10.1016/S0960-8524(99)00112-1
[37] B. Rager and V. Krysztafkiewicz, “Effect of Electrolytes and Surfactants on Physicochemical Properties and Po- rous Structures of Hydrated Silicas,” Colloids and Sur- faces A: Physicochemical and Engineering Aspects, Vol. 125, No. 2-3, 1997, pp. 121-130. doi:10.1016/S0927-7757(97)00063-0
[38] S. A. K. Jeeliani, G. Benoist, K. S. Joshi, R. Gunde, D. Kellenberger and E. J. Windhab “Creaming and Aggrega- tion of Particles in Suspensions,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 263, No. 1-3, 2005, pp. 379-389. doi:10.1016/j.colsurfa.2005.01.003
[39] D. G. Bika, M. Gentzler and V. Michaels, “Mechanical Properties of Agglomerates,” Powder Technology, Vol. 117, No. 1-2, 2001, pp. 98-112. doi:10.1016/S0032-5910(01)00318-7

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.