Structural, Surface, Thermal and Catalytic Properties of Chitosan Supported Cu(II) Mixed Ligand Complex Materials

Abstract

Schiff base modified chitosan (SC: salicylidenechitosan) has been synthesized by the condensation reaction of chitosan and salicylaldehyde. From this ligand, three Cu(II) mixed ligand complexes [Cu (SC) (SA)] (1), [Cu (SC) (ST)] (2) and [Cu (SC) (VA)] (3) (SA: salicyledeneaniline; ST: salicylidenethiourea; VA: o-vanillideneaniline) have been synthesized successfully. The structure and properties of the complexes have been characterized by spectral and analytical techniques. Their thermal and morphological properties have been also discussed in detail. The crystallinity of the compounds has explored with X-ray diffraction spectroscopy. The catalytic ability of the complexes has been investigated in the oxidation reaction of cyclohexane into cyclohexanol and cyclohexanone using hydrogen peroxide as oxidant and their catalytic activity is in the order of complex 1 > 2 < 3.

Share and Cite:

Antony, R. , David, S. , Karuppasamy, K. , Saravanan, K. , Thanikaikarasan, S. and Balakumar, S. (2012) Structural, Surface, Thermal and Catalytic Properties of Chitosan Supported Cu(II) Mixed Ligand Complex Materials. Journal of Surface Engineered Materials and Advanced Technology, 2, 284-291. doi: 10.4236/jsemat.2012.24043.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] N. M. Alves and J. F. Mano, “Chitosan Derivatives Obtained by Chemical Modifications for Biomedical and Environmental Applications,” International Journal of Biological Macro-molecules, Vol. 43, No. 5, 2008, pp. 401- 414. doi:10.1016/j.ijbiomac.2008.09.007
[2] J. E. Santos, E. R. Dockal and E. T. G. Cavalheiro, “Synthesis and Characterization of Schiff Bases from Chitosan and Salicylaldehyde Derivatives,” Carbohydrate Polymers, Vol. 60, No. 3, 2005, pp. 277-282. doi:10.1016/j.carbpol.2004.12.008
[3] M. N. V. R. Kumar, “A Review of Chitin and Chitosan Applications,” Reactive and Functional Polymers, Vol. 46, No. 1, 2000, pp. 1-27. doi:10.1016/S1381-5148(00)00038-9
[4] R. A. A. Muzzarelli, “Chitin,” Pergamon Press, Oxford, 1977, pp. 83-252.
[5] M. Rinaudo, “Chitin and Chitosan: Properties and Applications,” Progress in Polymer Science, Vol. 31, No. 7, 2006, pp. 603-632. doi:10.1016/j.progpolymsci.2006.06.001
[6] C. Demetgul and S. Serin, “Synthesis and Characterization of a New Vic-Dioxime Derivative of Chitosan and Its Transition Metal Complexes,” Carbohydrate Polymers, Vol. 72, No. 3, 2008, pp. 506-512. doi:10.1016/j.carbpol.2007.09.020
[7] V. V. Binsu, R .K. Nagarale, V. K. Shahi and P. K. Ghosh, “Studies on N-Methylene Phosphonic Chitosan/ Poly (Vinyl Alcohol) Composite Proton-Exchange Membrane,” Reactive and Functional Polymers, Vol. 66, No. 12, 2006, pp. 1619-1629. doi:10.1016/j.reactfunctpolym.2006.06.003
[8] D. Britto and O. B. G. Assis, “A Novel Method For Obtaining A Quaternary Salt Of Chitosan,” Carbohydrate Polymers, Vol. 69, No. 2, 2006, pp. 305-310. doi:10.1016/j.carbpol.2006.10.007
[9] K. V. H. Prashanth and R. N. Tharanathan, “Chitin/Chitosan: Modifications and Their Unlimited Application Potential—An Overview,” Trends in Food Science & Technology, Vol. 18, No.3, 2007, pp. 117-131. doi:10.1016/j.tifs.2006.10.022
[10] X. Jin, J. Wang and J. Bai, “Synthesis and Antimicrobial Activity of the Schiff Base from Chitosan and Citral,” Carbohydrate Research, Vol. 344, No. 6, 2009, pp. 825- 829. doi:10.1016/j.carres.2009.01.022
[11] M. Monier, D. M. Ayad, Y. Wei and A. A. Sarhan, “Adsorption of Cu(II), Co(II), and Ni(II) Ions by Modified Magnetic Chitosan Chelating Resin,” Journal of Hazardous Materials, Vol. 177, No. 1-3, 2010, pp. 962-970. doi:10.1016/j.jhazmat.2010.01.012
[12] L.-X. Wang, Z.-W. Wang, G.-S. Wang, X.-D. Lin and J.-G. Ren, “Catalytic Performance of Chitosan-Schiff Base Supported Pd/Co Bimetallic Catalyst for Acrylamide with Phenyl Halide,” Polymers for Advanced Technologies, Vol. 21, No. 4, 2010, pp. 244-249.
[13] R. R. Mohamed and A. M. Fekry, “Antimicrobial and Anticorrosive Activity of Adsorbents Based on Chitosan Schiff’s Base,” International Journal of Electrochemical Science, Vol. 6, No. 7, 2011, pp. 2488-2508.
[14] J. M. Liu, W. Sun, S. Z. Zheng and C. G. Xia, “Efficient Synthesis of Oxazolidin-2-One via (Chitosan-Schiff Base) co-balt(II)-Catalyzed Oxidative Carbonylation of 2-Amin- oalkan-1-Ols,” Helvetica Chimica Acta, Vol. 90, No. 8, 2007, pp. 1593-1598. doi:10.1002/hlca.200790167
[15] R. M. Wang, N. P. He, P. F. Song, Y. F. He, L. Ding and Z. Q. Lei, “Preparation of Nano-Chitosan Schiff-Base Copper Complexes and Their Anticancer Activity,” Polymers for Advanced Technologies, Vol. 20, No. 12, 2009, pp. 959-964. doi:10.1002/pat.1348
[16] U. Schuchardt, W. A. Carvalho and E. V. Spinacé, “Why is it Interesting to Study Cyclohexane Oxidation?” Synlett, Vol. 1993, No. 10, 1993, pp. 713-718.
[17] W. Kanjina and W. Trakarnpruk, “Oxidation of Cyclohexane and Ethyl Benzene by Hydrogen Peroxide over Co-Substituted Heteropolytungstate Catalyst,” Journal of Metals, Materials and Minerals, Vol. 20, No. 2, 2010, pp. 29-34.
[18] I. R. Hammoumraoui, A. C. Braham, L. P. Roy and C. Kappenstein, “Catalytic Oxidation of Cyclohexane to Cyclohexanone and Cyclohexanol by Tert-Butyl Hydroperoxide over Pt/Oxide Catalysts,” Bulletin of Material Science, Vol. 34, No. 5, 2011, pp. 1127-1135. doi:10.1007/s12034-011-0157-6
[19] T. F. Silva, G. S. Mishra, M. F. da Silva, R. Wanke, L. M. Martins and A. J. Pombeiro, “CuII Complexes Bearing the 2,2,2-Tris (1-Pyrazolyl) ethanol or 2,2,2-Tris (1-Pyrazolyl) ethyl Methanesulfonate Scorpionates. X-Ray Structural Characterization and Application in the Mild Catalytic Peroxidative Oxidation of Cyclohexane,” Dalton Transactions, Vol. 2009, No. 42, 2009, pp. 9207-9215.
[20] S. M. Islam, A. S. Roy, P. Mondal, M. Mubarak, S. Mondal, D. Hossain, S. Banerjee and S. C. Santra, “Synthesis, Catalytic Oxidation and Antimicrobial Activity of Copper(II) Schiff Base Complex,” Journal of Molecular Catalysis A: Chemical, Vol. 336, No. 1-2, 2011, pp. 106- 114. doi:10.1016/j.molcata.2011.01.006
[21] N. Raman, S. J. Raja, J. Joseph and J. D. Raja, “Synthesis, Spectral Characterization and DNA Cleavage Study of Heterocyclic Schiff Base Metal Complexes,” Journal of Chilean Chemical Society, Vol. 52, No. 2, 2007, pp. 1138-1141.
[22] S. Mansouri, P. Lavigne, K. Corsi, M. Benderdour, E. Beaumont and J. C. Fernandes, “Chi-tosan-DNA Nanoparticles as Non-Viral Vectors in Gene Therapy: Strategies to Improve Transfection Efficacy,” European Journal of Pharmaceutics and Biopharmaceutics, Vol. 57, No. 1, 2004, pp. 1-8. doi:10.1016/S0939-6411(03)00155-3
[23] F. Tian, Y. Liu, K. Hu and B. Zhao, “Study of the Depolymeriza-tion Behavior of Chitosan by Hydrogen Peroxide,” Carbohy-drate Polymers, Vol. 57, No. 1, 2004, pp. 31-37. doi:10.1016/j.carbpol.2004.03.016
[24] A. H. Al-kubaisi and K. Z. Ismail, “Nickel(II) and Palladium(II) Chelates of Dehy-droacetic Acid Schiff Bases Derived from Thiosemicarbazide and Hydrazinecarbidithioate,” Canadian Journal of Chemistry, Vol. 72, No. 8, 1994, pp. 1785-1788. doi:10.1139/v94-226
[25] N. Raman, A. Selvan and S. Sud-harsan, “Metallation of Ethylenediamine Based Schiff Base with Biologically Active Cu(II), Ni(II) and Zn(II) ions: Synthesis, Spectroscopic Characterization, Electrochemical Behaviour, DNA Binding, Photonuclease Activity and in Vitro Antim-icrobial Efficacy,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, Vol. 79, No. 5, 2011, pp. 873-883. doi:10.1016/j.saa.2011.03.017
[26] J. Ribas, C. Diaz, R. Costa, Y. Journaux, C. Mathoniere, O. Kahn and A. Gleizes, “Structure and Magnetic and Spectroscopic Properties of a Nick-el(II)Copper(II)Nickel(II) Trinuclear Species,” Inorganic Chemistry, Vol. 29, No. 11, 1990, pp. 2042-2047. doi:10.1021/ic00336a003
[27] S. L. Sun and A. Q. Wang, “Adsorption Properties Of Carboxymethyl-Chitosan and Cross-Linked Carboxyme- thyl-Chitosan Resin With Cu(II) as Template,” Separation and Purification Technology, Vol. 49, No. 3, 2006, pp. 197-204. doi:10.1016/j.seppur.2005.09.013
[28] N. A. Anan, S. M. Hassan, E. M. Saad, I. S. Butler and S. I. Mostafa, “Preparation, Characterization and pH-Metric Measurements of 4-Hydroxysalicylidenechitosan Schiff-Base Complexes of Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Ru(III), Rh(III), Pd(II) and Au(III),” Carbohydrate Research, Vol. 346, No. 6, 2011, pp. 775-793. doi:10.1016/j.carres.2011.01.014
[29] O. A. Monteiro Jr. and C. Airoldi, “Some Studies of Crosslinking Chi-tosan—Glutaraldehyde Interaction in a Homogeneous System,” International Journal of Biological Macromolecules, Vol. 26, No. 2-3, 1999, pp. 119-128. doi:10.1016/S0141-8130(99)00068-9
[30] R. P. Dhakal, T. Oshima and Y. Baba, “Planarity- Recognition Enhancement Of N-(2-Pyridylmethyl)Chitosan By Imprinting Planar Metal Ions,” Reactive and Functional Polymers, Vol. 68, No. 11, 2008, pp. 1549-1556. doi:10.1016/j.reactfunctpolym.2008.08.008
[31] G. A. Roberts, “Chitin Chemistry,” Macmillian Press, London, 1992.
[32] H. Zhang, Y. M. Du, J. H. Yu, R. H. Huang and L. N. Zhang, “Preparation and Characterization of Chitosan/ Poly(Vinyl Alcohol) Blend Fibers,” Journal of Applied Polymer Science, Vol. 80, No. 13, 2001, pp. 2558-2565. doi:10.1002/app.1365
[33] T. F. Jiao, J. Zhou, J. X. Zhou, L. H. Gao, Y. Y. Xing and X. H. Li, “Synthesis and Characterization of Chitosan- Based Schiff Base Compounds with Aromatic Sub-stituent Groups,” Iranian Polymer Journal, Vol. 20, No. 2, 2011, pp. 123-136.
[34] Y. Q. Zhang, C. H. Xue, Y. Xue, R. C. Gao and X. L. Zhang, “Determination of the Degree of Deacetylation of Chitin and Chitosan by X-Ray Powder Diffraction,” Carbohydrate Research, Vol. 340, No. 11, 2005, pp. 1914- 1917. doi:10.1016/j.carres.2005.05.005
[35] K. Martina, S. E. S. Leonhardt, B. Ondruschka, M. Curini, A. Binello and G. Cravotto, “In Situ Cross-Linked Chitosan Cu(I) or Pd(II) Com-plexes as a Versatile, Eco-Friendly Recyclable Solid Catalyst,” Journal of Molecular Catalysis A: Chemical, Vol. 334, No. 1-2, 2011, pp. 60-64. doi:10.1016/j.molcata.2010.10.024

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.