Micro Algae: A Potential Source of Biodiesel


The economic development of the world is highly dependent on fossil fuel supplies which are constrained not only by limited availability but also generate high levels of pollution. Looking at the limited fossil fuel associated with problems, concerted efforts have been started to search for alternative bio fuels like bio ethanol and biodiesel. Since the diesel is being used massively in industrial commercial, agriculture and other sectors. Therefore, the production and utilization of biodiesel from oil seeds crops has been getting renewed interest in recent years in the India to overcome the demerits of oil from oil seed crops. The production of biodiesel from micro-algae has several advantages over the above re- sources due to higher algal biomass and oil productivities and the need of non-arable land for its growth. Industrial and municipal wastewaters can be potentially utilized for cultivation of micro algal oil that can be used for the production of biodiesel to completely displace petro diesel. The micro algal biomass has been reported to yield high oil contents and have the diesel production. Accordingly, lot of R & D work has been initiated for the growth, harvesting, oil extraction and conversion to biodiesel.

Share and Cite:

S. Rajvanshi and M. Sharma, "Micro Algae: A Potential Source of Biodiesel," Journal of Sustainable Bioenergy Systems, Vol. 2 No. 3, 2012, pp. 49-59. doi: 10.4236/jsbs.2012.23008.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Y. Li, B. Wang, N. Wu and C. Q. Lan, ‘‘Effects of Nitrogen Sources on Cell Growth Andlipid Production of Neochloris oleoabundans,” Applied Microbiology and Biotechnology, Vol. 81, No. 4, 2008, pp. 629-636. doi:10.1007/s00253-008-1681-1
[2] Y. Li, M. Horsman, N. Wu, C. Q. Lan and N. DuboisCalero, “Biofuels from Microalgae,” Biotechnology Progress, Vol. 24, No. 4, 2008, pp. 815-820.
[3] A. Richmond, “Handbook of Microalgal Culture: Biotechnology and Applied Phycology,” Blackwell Science Ltd., 2004.
[4] J. Sheehan, T. Dunahay, J. Benemann and P. Roessler, “A Look Back at the US Department of Energy’s Aquatic Species Program: Biodiesel from Algae,” NREL/TP-58024190, National Renewable Energy Laboratory, USA, 1998.
[5] Y. Chisti, “Biodiesel from Microalgae,” Biotechnology Advances, Vol. 25, No. 3, 2007, pp. 294-306. doi:10.1016/j.biotechadv.2007.02.001
[6] A. B. M. S. Hossain, A. Salleh, A. N. Boyce, P. Chowdhury and M. Naqiuddin, “Biodiesel Fuel Production from Algae as Renewable Energy,” American Journal of Biochemistry and Biotechnology, Vol. 4, No. 3, 2008, pp. 250-254. doi:10.3844/ajbbsp.2008.250.254
[7] Q. Hu, M. Sommerfeld, E. Jarvis, M. Ghirardi, M. Posewitz, M. Seibert, et al., “Microalgal Triacylglycerols as Feedstocks for Biofuels Production: Perspectives and Advances,” The Plant Journal, Vol. 54, No. 4, 2008, pp. 621-639. doi:10.1111/j.1365-313X.2008.03492.x
[8] L. Rodolfi, G. C. Zittelli, N. Bassi, G. Padovani, N. Biondi, G. Bonini, et al., “Microalgae for Oil: Strain Selection, Induction of Lipid Synthesis and Outdoor Mass Cultivation in a Low-Cost Photobioreactor,” Biotechnology and Bioengineering, Vol. 102, No. 1, 2009, pp. 100-112 . doi:10.1002/bit.22033
[9] J. N. Rosenberg, G. A. Oyler, L. Wilkinson and M. J. Betenbaugh, “A Green Light for Engineered Algae: Redirecting Metabolism to Fuel a Biotechnology Revolution,” Current Opinion in Biotechnology, Vol. 19, No. 5, 2008, pp. 430-436. doi:10.1016/j.copbio.2008.07.008
[10] P. M. Schenk, S. R. T. Hall, E. Stephens, U. C. Marx, J. H. Mussgnug, C. Posten, et al., “ Second Generation Biofuels: High-Efficiency Microalgae for Biodiesel Production,” Bioenergy Research, Vol. 1, No. 1, 2008, pp. 20-43. doi:10.1007/s12155-008-9008-8
[11] K. Tsukahara and S. Sawayama, “Liquid Fuel Production Using Microalgae,” Journal of the Japan Petroleum Institute, Vol. 48, No. 5, 2005, pp. 251-259. doi:10.1627/jpi.48.251
[12] P. Spolaore, C. C. Joannis, E. Duran and A. Isambert, “Commercial Applications of Microalgae,” Journal of Bioscience and Bioengineering, Vol. 101, No. 2, 2006, pp. 87-96. doi:10.1263/jbb.101.87
[13] J. Pratoomyot, P. Srivilas and T. Noiraksar, “Fatty Acids Composition of 10 Microalgal Species,” Journal of Science and Technology, Vol. 27, No. 6, 2005, pp. 1179-1187.
[14] L. Gouveia and A. C. Oliveira, “Microalgae as a Raw Material for Biofuels Production,” Journal of Industrial Microbiology and Biotechnology, Vol. 36, No. 2, 2009, pp. 269-274. doi:10.1007/s10295-008-0495-6
[15] F. Natrah, V. F. M Yoso, V. M. Shari, F. Abas and N. S. Mariana, “Screening of Malaysian Indigenous Microalgae for Antioxidant Properties and Nutritional Value,” Journal of Applied Phycology, Vol. 19, No. 6, 2007, pp. 711718. doi:10.1007/s10811-007-9192-5
[16] T. M. Maata, A. A. Martins and N. S. Caetano, “Microalgae for Biodiesel Production and Other Applications: A Review,” Renewable and Sustainable Energy Reviews, Vol. 14, No. 1, 2010, pp. 217-232.
[17] S. O. tles and R. Pire, “Fatty Acid Composition of Chlorella and Spirulina microalgae Species,” Journal of AOAC International, Vol. 84, No. 6, 2001, pp. 17081714.
[18] D. Bilanovic, A. Andargatchew, T. Kroeger and G. Shelef, “Freshwater and Marine Microalgae Sequestering of CO2 at Different C and N Concentrations—Response Surface Methodology Analysis,” Energy Conversion and Management, Vol. 50, No. 2, 2009, pp. 262-267. doi:10.1016/j.enconman.2008.09.024
[19] G. Hodaifa, M. E. Mart?`nez and S. Sa`nchez, “Use of Industrial Wastewater from Oliveoil Extraction for Biomass Production of Scenedesmus obliquus,” Bioresource Technology, Vol. 99, No. 5, 2008, pp. 1111-1117. doi:10.1016/j.biortech.2007.02.020
[20] E. Jacob-Lopes, L. M. C. F. Lacerda and T. T. Franco, “Biomass Production and Carbon Dioxide Fixation by Aphanothece Microscopica Na¨geli in a Bubble Column Photobioreactor,” Biochemical Engineering Journal, Vol. 40, No. 1, 2008, pp. 27-34. doi:10.1016/j.bej.2007.11.013
[21] E. L. Jacob, C. H. G. Scoparo, L. M. C. F. Lacerda and T. T. Franco, “Effect of Light Cycles (Night/Day) on CO2 Fixation and Biomass Production by Microalgae in Photobioreactors,” Journal of Chemical Engineering and Processing, Vol. 48, No. 1, 2009, pp. 306-310. doi:10.1016/j.cep.2008.04.007
[22] M. Murakami, F. Yamada, T. Nishide, T. Muranaka, N. Yamaguchi and Y. Takimoto, “The Biological CO2 Fixation Using Chlorella sp. with High Capability in fixing CO2,”Studies in Surface Science and Catalysis, Vol. 114, 1998, pp. 315-320. doi:10.1016/S0167-2991(98)80763-5
[23] N. R. Moheimani, “The Culture of Coccolithophorid Algae for Carbon Dioxide Bioremediation,” PhD Thesis. Murdoch University, Perth, 2005.
[24] K. Kaewpintong, A. Shotiprunk, S. Powtongsook and P. Pavasout, “Photoautotrophic High Density Cultivation of Vegitative Cells of Haematococcus plevialis in Airlift Bioreactor,” Bioresource Technology, Vol. 98, No. 2, 2007, pp. 288-295. doi:10.1016/j.biortech.2006.01.011
[25] W. H. Thomas, T. G. Tornabene and J. Weissman, “Screening for Lipid Yielding Microalgae: Activities for 1983,” Final Subcontract Report, US Department of Energy, Washington DC, 1984.
[26] C. U. Ugwu, H. Aoyagi and H. Uchiyama, “Photobioreactors for Mass Cultivation of Algae,” Bioresource Technology, Vol. 99, No. 10, 2007, pp. 4021-4028.
[27] J. C. Weissman and R. P. Goebel, “Design and Analysis of Microalgal Open Pond Systems for the Purpose of Producing Fuels,” A subcontract Report, US DOESERI, 1987.
[28] R. Samson and A. Leduy, “Biogas Production from Anaerobic Digestion of Spirulina maxima Algal Biomass,” Biotechnology and Bio-Engineering, Vol. 24, No. 8, 1982, pp. 1919-1924. doi:10.1002/bit.260240822
[29] R. D. Ortega and J. C. Roux, “Production of Chlorella Biomass in Different Types of Flat Bioreactors in Temperate Zones,” Elsevier Biomass, Vol. 10, No. 2, 1986, pp. 141-156.
[30] M. R. Tredici and R. Materassi, “The Italian Experience in the Development of Reactors for the Mass Cultivation of Photoautotrophic Microorganisms”, Journal of Applied Phycology, Vol. 4, No. 3, 1992, pp. 221-231. doi:10.1007/BF02161208
[31] M. L. Ghirardi, J. P. Zhang, J. W. Lee, T. Flynn, M. Seibert, E. Greenbaum, et al.,“Microalgae: A Green Source of Renewable H2,” Trends in Biotechnology, Vol. 18, No. 12, 2000, pp. 506-511. doi:10.1016/S0167-7799(00)01511-0
[32] S. Hoekema, M. Bijmans, M. Janssen, J. Tramper and R. H. Wijffels, “A Pneumatically Agitated Flat-Panel Photobioreactor with Gas Re-Circulation: Anaerobic Photoheterotrophic Cultivation of a Purple Non-Sulfur Bacterium”, International Journal of Hydrogen Energy, Vol. 27, No. 11-12, 2002, pp. 1331-1338. doi:10.1016/S0360-3199(02)00106-4
[33] Q. Hu, H. Guterman and A. Richmond, “A Flat Inclined Modular Photobioreactor for Outdoor Mass Cultivation of Phototrophs”, Biotechnology & Bioengineering, Vol. 51, No. 1, 1996, pp. 51-60. doi:10.1002/(SICI)1097-0290(19960705)51:1<51::AID-BIT6>3.0.CO;2-#
[34] Q. Hu, N. Kurano, M. Kawachi, I. Iwasaki and A. Miyachi, “Ultrahigh-Cell-Density Culture of Amarine Alga CHLOROCOCCUM Littorale in a flat-Plate Photobioreactor,” Applied Microbiology and Biotechnology, Vol. 49, No. 6, 1998, pp. 655-662. doi:10.1007/s002530051228
[35] N. Eriksen, “The Technology of Microalgal Culturing,” Biotechnology Letters, Vol. 30, No. 9, 2008, pp. 15251536. doi:10.1007/s10529-008-9740-3
[36] B. Wang, Y. Li, N. Wu and C. Lan, “CO2 Bio-Mitigation Using Microalgae,” Applied Microbiology and Biotechnology, Vol. 79, No. 5, 2008, pp. 707-718. doi:10.1007/s00253-008-1518-y
[37] R. E. Lee, “Phycology,” Cambridge University Press, New York, 1980.
[38] Wikipedia, “The free Encyclopedia”. http://www.oilgae.org/algae_FAQ
[39] L. Lewis, “Seaweed to Breathe New Life into Fight against Global Warming,” The Times Online, London, 2008.
[40] S. J. Horn, “Production of Biogas and Bioethanol from Brown Macroalgae,” Seaweed Biofuels, 2009, p. 104.
[41] http://www.algaefuels.org/algae_FAQ.htm
[42] http://www.unapcaem.org/publication/bioenergy
[43] http://www.netl.doe.gov/publications/proceedings/03/carbon-seq/PDFs/158
[44] A. A. A. Kheira and N. M. M. Atta,“ Response of Jatropha curcas L. to Water Deficit: Yield, Water Use Efficiency and Oilseed Characteristics,” Biomass and Bioenergy, Vol. 33, No. 10, 2008, pp. 1343-1350. doi:10.1016/j.biombioe.2008.05.015
[45] K. Cenciani, M. C. B. Oliveira, B. J. Feigl and C. C. Cerri, “Sustainable Production of Biodiesel by Microalgae and Its Application in Agriculture,” African Journal of Microbiology Research, Vol. 5, No. 26, 2011, pp. 4638-4645.
[46] L. A. Kulay and G. A. Silva, “Comparative Screening LCA of Agricultual Stages of Soy and Castor Beans,” 2nd International Conference on Life Cycle Management, Barcelona, 5-7 September 2005, pp. 5-7.
[47] Mobius Biofuels, Limited Liability Company, 2008. http://www.mobiusbiofuels.com/biodiesel.htm
[48] D. C. Nielsen, “Oilseed Productivity under Varying Water Availability,” Proceedings of 20th Annual Central Plains Irrigation Conference and Exposition, Akron, 1 January 2008, pp. 30-33.
[49] C. L. Peterson and T. Hustrulid, “Carbon Cycle for Rapeseed Oil Biodiesel Fuels,” Biomass and Bioenergy, Vol. 14, No. 2, 1998, pp. 91-101. doi:10.1016/S0961-9534(97)10028-9
[50] U. Mubee, Zia-ul-Islam, M. W. Hussain and K. A. Malik, “Future of Your Fuel Tank,” Department of Biological Sciences, Lahore, 5 June 2010, p. 131.
[51] L. Reijnders and M. A. J. Huijbregts, “Biogenic Greenhouse Gas Emissions Linked to the Life Cycles of Biodiesel Derived from European Rapeseed and Brazilian Soybeans,” Journal of Cleaner Production, Vol. 16, No. 18, 2008, pp. 1943-1948. doi:10.1016/j.jclepro.2008.01.012
[52] J. Vollmann, T. Moritz, C. Karg, S. Baumgartner and H. Wagentrist, “Agronomic Evaluation of Camelina Genotypes Selected for Seed Quality Characteristics,” Industrial Crops and Products, Vol. 26, No. 3, 2007, pp. 270-277. doi:10.1016/j.indcrop.2007.03.017
[53] M. Zappi, R. Hernandez, D. Sparks, J. Horne, M. Brough, D. C. Swalm, et al., “A Review of the Engineering Aspects of the Biodiesel Industry,” MSU E-TECH Laboratory Report, 2003.
[54] M. E. Grima, E. H. Belari, A. G. A. Fernandez, A. R. Medina and Y. Chisti, “Recovery of Microalgal Biomass and Metabolites: Process Options and Economics,” Biotechnology Advances, Vol. 20, No. 7-8, 2003, pp. 491515. doi:10.1016/S0734-9750(02)00050-2
[55] R. A. Korus, D. S. Hoffman and N. Bam, “Transesterification Process to Manufacture Ethyl Ester of Rape Oil,” Proceedings of 1st Biomass Conference of the Americas: Energy, Environment, Agriculture and Industry, Vol. II, National Renewable Energy Laboratory (NREL), Golden, 1993, pp. 815-826.
[56] G. Antolin, F. V. Tinaut, Y. Briceno, V. Castano, C. Perez and A. I. Ramirez, “Optimisation of Biodiesel Production by Sunflower Oil Transesterification,” Bioresource Technology , Vol. 83, No. 2, 2002, pp. 111-114. doi:10.1016/S0960-8524(01)00200-0
[57] W. Du, Y. Y. Xu, J. Zeng and D. H. Liu, “Novozym 435-Catalysed Transesterification of Crude Soybean Oils for Biodiesel Production in Solvent-Free Medium,” Biotechnology and Applied Biochemistry, Vol. 40, No. 2, 2004, pp. 187-190. doi:10.1042/BA20030142
[58] D. Darnoko and M. Cheryan, “Kinetics of Palm Oil Transesterification in a Batch Reactor,” Journal of American Oil Chemist Society, Vol. 77, No. 12, 2000, pp. 12631267. doi:10.1007/s11746-000-0198-y
[59] M. Ahmad, S. Rashid, M. A. Khan, M. Zafar, S. Sultana and S. Gulzar, “Optimization of Base Catalyzed Transesterification of Peanut Oil Biodiesel,” African Journal of Biotechnology, Vol. 8, No. 3, 2009, pp. 441-446.
[60] H. J. Berchmans and S. Hirata, “Biodiesel Production from Crude Jatropha curcas L. Seed Oil with a High Content of Free Fatty Acids,” Bioresource Technology, Vol. 99, No. 6, 2008, pp. 1716-1721. doi:10.1016/j.biortech.2007.03.051
[61] S. V. Ghadge and H. Raheman, “Biodiesel Production from Mahua (Madhuca indica) Oil Having High Free Fatty Acids,” Biomass and Bioenergy, Vol. 28, No. 6, 2005, pp. 601-605. doi:10.1016/j.biombioe.2004.11.009
[62] S. K. Kamree and A. Chadha, “Preparation of Biodiesel from Crude Oil of Pongamia pinnata,” Bioresource Technology, Vol. 96, No. 13, 2005, pp. 1425-1429. doi:10.1016/j.biortech.2004.12.011
[63] L. C. Meher, V. S. S. Dharmagadda and S. N. Naik, “Optimisation of Alkali-Catalysed Transesterifcation of Pongamia pinnata Oil for Production of Biodiesel,” Bioresource Technology, Vol. 97, No. 12, 2006, pp. 3921397. doi:10.1016/j.biortech.2005.07.003
[64] A. Karmakar, S. Karmakar and S. Mukherjee, “Properties of Various Plants and Animals Feedstocks fo Biodiesel Production,” Bioresource Technology, Vol. Vol. 101, No. 19, 2010, pp. 7201-7210. doi:10.1016/j.biortech.2010.04.079
[65] C. He, P. Baoxiang, W. Dezheng and W. Jinfu, “Biodiesel Production by the Transesterification of Cottonseed Oil by Solid Acid Catalysts,” Frontiers of Chemical Engineering in China, Vol. 1, No. 1, 2007, pp. 11-15.
[66] D. Royon, M. Daz, G. Ellenrieder and S. Locatelli, “Enzymatic Production of Biodiesel from Cottonseed Oil Using t-Butanol as a Solvent,” Bioresource Technology, Vol. 98, No. 3, 2006, pp. 648-653. doi:10.1016/j.biortech.2006.02.021
[67] A. Saydut, M. Z. Duz, C. Kaya, A. B. Kafadar and C. Hamamci, “Transesterified Sesame (Sesamum indicum L.) Seed Oil as a Biodiesel Fuel,” Bioresource Technology, Vol. 99, No. 14, 2008, pp. 6656-6660. doi:10.1016/j.biortech.2007.11.063
[68] L. Chen, T. Liu , W. Zhang, X. Chen and J. Wang, “Biodiesel Production from Algae Oil High in Free Fatty Acids by Two-Step Catalytic Conversion,” Bioresource Technology, Vol. 111, 2012, pp. 208-214. doi:10.1016/j.biortech.2012.02.033
[69] X. Miao and Q. Wu, “Biodiesel Production from Heterotrophic Microalgal Oil,”Bioresource Technology, Vol. 97, No. 6, 2006, pp. 841-846. doi:10.1016/j.biortech.2005.04.008
[70] S. Jain, M. P. Sharma and S. Rajvanshi, “Evaluation of Engine Performance on Biodiesel from WCO,” 4th International Conference on Energy Informatics & Cybernetics (EIC), Orlando, 29 June-2 July 2008.
[71] S. Jain and M. P. Sharma, “Kinetics of Acid Base Ctalyzed Transesterification of Jatropha curcas Oil,” Bioresource Technology, Vol. 101, No. 20, 2010, pp. 7701-7706. doi:10.1016/j.biortech.2010.05.034
[72] C. C. Akoh, S. S. Chang, G. G. Lee and J. J. Shaw, “Enzymatic Approach to Biodiesel Production,” Journal of Agricultural and Food Chemistry, Vol. 55, No. 22, 2007, pp. 8995-9005. doi:10.1021/jf071724y
[73] M. Cartens, E. G. Molina, A. M. Robles, A. Giménez and M. J. G. Ibanez, “Eicosapentaenoic Acid (20:5n-3) from the Marine Microalgae Phaeodactylum tricornutum,” Journal of American Oil Chemical Society, Vol. 73, No. 8, 1996, pp. 1025-1031. doi:10.1007/BF02523411
[74] D. Bajpai and V. K. Tyagi, “Biodiesel: Source, Production, Composition, Properties and Its Benefits,” Journal of Oleo Science, Vol. 55, No. 10, 2006, pp. 487-502. doi:10.5650/jos.55.487
[75] M. J. Ramos, C. M. Fernández, A. Casas, L. Rodríguez and A. Pérez, “Influence of Fatty Acid Composition of Raw Materials on Biodiesel Properties,” Bioresource Technology, Vol. 100, No. 1, 2009, pp. 261-268. doi:10.1016/j.biortech.2008.06.039
[76] R. Rengasamy, “Demonstration and Extension of Culture and Cultivation of Alginophytes, Sargassum polycystem C. Agardh and S. wightii,” Department of Science, 20082011.
[77] R. Rengasamy, “Potential of Seaweed and Sea Grass for Biogas Production,” Aguagri, New Delhi, 2008-2009.
[78] R. Rengasamy, “Optimization of Conditions for Mass Culture of Botryococcus braunii under Open Race Way Ponds,” Aban Informatics Pvt. Ltd., Chennai, 2008-2009.
[79] C. Dayananda, R. Sarada, S. Bhattacharya and G. A. Ravishankar, “Effect of Media and Culture Conditions on Growth and Hydrocarbon Production by Botryococcus braunii,” Process Biochemistry, Vol. 40, No. 9, 2005, pp. 3125-3131. doi:10.1016/j.procbio.2005.03.006
[80] C. Dayananda, R. Sarada, P. Srinivas, T. R. Shamala and G. A. Ravishankar, “Presence of Methyl Branched Fatty Acids and Saturated Hydrocarbons in Botryococcene Producing Strain of Botryococcus braunii,” Acta Physiologiae Plantarum, Vol. 28, No. 3, 2006, pp. 251-256. doi:10.1007/BF02706538
[81] U. Tripathi, R. Sarada and G. A. Ravishankar, “A Culture Method for Micro Algal Forms Using Two-Tier Vessel Providing Carbon-Dioxide Environment: Studies on Growth and Carotenoids Production,” Journal of Microbiology and Biotechnology, Vol. 17, No. 4, 2001, pp. 325-329. doi:10.1023/A:1016682120171
[82] V. Sivasubramanian, V. V. Subramanian, P. A. Raju and M. Muthukumaran, “Phycoremediation of Oil Drilling Waste at Kakinada,” International Conference on Algal biomass, Resources and Utilization, Stella Maris College, Chennai, 27-30 July 2009.
[83] R. Ranjithkumar, V. V. Subramanian and V. Sivasubramanian, “Phycoremediation of Acidic Effluent from a Confectionary Industry near Chennai,” International Conference on Algal Biomass, Resources and Utilization, Stella Maris College, Chennai, 27-30 July 2009.
[84] P. H. Rao, R. R. Kumar, B. G. Raghavan, V. V. Subramanian and V. Sivasubramanian, “Phycoremediation of Effluent from a Leather Processing Chemical Industry,” International Conference on Algal Biomass, Resources and Utilization, Stella Maris College, Chennai, 27-30 July 2009.
[85] S. Chinnasamy, B. Ramakrishnan, A. Bhatnagar and K. C. Das, “Biomass Production Potential of a Wastewater Alga Chlorella vulgaris ARC 1 under Elevated Levels of CO2 and Temperature,” International Journal of Molecular Sciences, Vol. 10, No. 2, 2009, pp. 518-532. doi:10.3390/ijms10020518
[86] T. V. Ramachandra, M. M. Durga and B. Karthick, “Milking Diatoms for Sustainable Energy: Biochemical Engineering versus Gasoline-Secreting Diatom Solar Panels,” Industrial & Engineering Chemistry Research, Vol. 48, No. 19, 2009, pp. 8769-8788. doi:10.1021/ie900044j
[87] S. Rajvanshi, S. Jain and M. P. Sharma, “Micro Algae as Potential Source of Biodiesel in India,” 6th International Conference on Sustainable Development of Energy Water and Environment System, Dubrovnik, 25-29 September 2011.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.