Electrochemical Characteristics of Natural Mineral Covellite

Abstract

Electrochemical characteristics of covellite (CuS) are of importance from flotation and metallurgical point of view, as well as due to its potential application in solid state solar cells and in photocatalytic reactions. Also, the compound CuS appears as an intermediary product or a final product in electrochemical oxidation reactions of chalcocite (Cu2S) which exhibits supercapacitor characteristics. Natural copper mineral covellite has been investigated in inorganic sulfate acid electrolytes, as well as in strong alkaline electrolyte. Physical properties of covellite were characterized by X-ray diffraction (XRD) and the active surface was examined by optical and electron microscopy (EM) before and after oxidation in galvanostatic regime. Different electrochemical methods (galvanostatic, potentiostatic, cyclic voltammetry and electrochemical impedance spectroscopy - EIS) have been used. The capacitance of around 21 Fcm-2 (geometric area), serial resistance of about 90 Ωcm2 and leakage resistance of about 1200 Ωcm2 have been measured in 1 M H2SO4. The addition of cupric ions in sulfate electrolyte leads to the significant increasing of the capacitance, but having the increase of self-discharge as a negative side phenomenon. The capacitance of around 6.7 Fcm-2 (geometric area), serial resistance of about 80 Ωcm2 and leakage resistance of about 380 Ωcm2 have been measured in 6 M KOH.

Share and Cite:

Rajčić-Vujasinović, M. , Stević, Z. and Bugarinović, S. (2012) Electrochemical Characteristics of Natural Mineral Covellite. Open Journal of Metal, 2, 60-67. doi: 10.4236/ojmetal.2012.23009.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] M. Page, O. Niitsoo, Y. Itzhaik, D. Cahen and G. Hodes, “Copper Sulfide as a Light Absorber in Wet-Chemical Synthesized Extremely Thin Absorber (ETA) Solar Cells,” Energy and Environmental Science, Vol. 2, No. 2, 2009, pp. 220-223. doi:10.1039/b813740d
[2] L. Isac, A. Duta, A. Kriza, S. Manolache and M. Nanu, “Copper Sulfides Obtained by Spray Pyrolysis—Possible Absorbers in Solid-State Solar Cells,” Thin Solid Films, Vol. 515, No. 15, 2007, pp. 5755-5758. doi:10.1016/j.tsf.2006.12.073
[3] B. E. Conway, “Electrochemical Supercapacitors,” Kluwer Academic/Plenum Publishers, New York, 1999.
[4] Z. Stevi? and M. Raj?i?-Vujasinovi?, “Chalcocite as a Potential Material for Supercapacitors,” Jourmal of Power Sources, Vol. 160, No. 2, 2006, pp. 1511-1517. doi:10.1016/j.jpowsour.2006.03.014
[5] F. Tao, Y-Q. Zhao, G-Q. Zhang and H-L. Li, “Electrochemical Characterization on Cobalt Sulfide for Electrochemical Supercapacitors,” Electrochemistry Communications, Vol. 9, No. 6, 2007, pp. 1282-1287. doi:10.1016/j.elecom.2006.11.022
[6] M. Jayalakshmi, M. Mohan Rao and B. M. Choudary, “Identifying Nano SnS as a New Electrode Material for Electrochemical Capacitors in Aqueous Solutions,” Electrochemistry Communications, Vol. 6, No. 11, 2004, pp. 1119-1122. doi:10.1016/j.elecom.2004.09.004
[7] M. Jayalakshmi and M. Mohan Rao, “Synthesis of Zinc Sulphides Nanoparticles by Thiourea Hydrolysis and Their Characterization for Electrochemical Capacitor Applications,” Journal of Power Sources, Vol. 157, No. 1, 2006, pp. 624-629. doi:10.1016/j.jpowsour.2005.08.001
[8] M. Raj?i?-Vujasinovi?, Z. Stankovi? and Z. Stevi?, “Consideration of the Analogue Electrical Circuit of the Metal or Semiconductor/Electrolyte Interfaces Based on the Time Transient Analysis,” Russian Journal of Electrochemistry,Vol. 35, No. 3, 1999, pp. 320-327.
[9] A. A. Godvikov, “Mineralogiya,” Nedra, Moscow, 1975.
[10] “Handbook of Chemistry and Physics,” CRC Press, Florida, 1977.
[11] P. L. Rossiter, “The Electrical Resistivity of Metals and Alloys,” Cambridge University Press, Cambridge, 1987. doi:10.1017/CBO9780511600289
[12] G. Springer, “Observations on the Electrochemical Reactivity of Semiconducting Minerals,” Transactions of The Institution of Mining and Metallurgy, Vol. 79C, 1970, pp. C11-C15.
[13] M. Raj?i?-Vujasinovi?, “Kinetics and Mechanism of Electrochemical Oxidation of Natural Mineral Covellite,” Ph.D. Thesis, Technical Faculty in Bor, Bor, 1989.
[14] A. G. Loshkarev and A. F. Vozisov, “Anodic Dissolution of Copper Sulphide,” Russian Journal of Applied Chemistry, Vol. 26, No. 1, 1953, pp. 55-62.
[15] M. Sato, “Half-Cell Potentials of Semiconductive Simple Binary Sulfides in Aqueous Solution,” Electrochimica Acta, Vol. 11, No. 3, 1966, pp. 361-373. doi:10.1016/0013-4686(66)87046-9
[16] P. R. Kruesi, E. S. Allen and J. L. Lake, “Cymet Process Hydrometallurgical Conversion of Base-Metal Sulphides to Pure Metals,” Canadian Institute of Mining, Metallurgy and Petroleum Bulletin, Vol 66, No. 734, 1973, pp. 8187.
[17] D. F. A. Koch, “Electrochemistry of Sulfide Minerals,” In: J. O’M. Bockris and B. E. Conway, Eds., Modern Aspects of Electrochemistry, Plenum Press, New York, 1975, p. 211.
[18] D. J. MacKinnon, “Fluidised-Bed Anodic Dissolution of Chalcocite,” Hydrometallurgy, Vol. 1, No. 3, 1976, pp. 241-257. doi:10.1016/0304-386X(76)90002-5
[19] D. J. MacKinnon, “Fluidised-Bed Anodic Dissolution of Covellite,” Hydrometallurgy, Vol. 2, No. 1, 1976, pp. 6576. doi:10.1016/0304-386X(76)90014-1
[20] T. Biegler and D. C. Constable, “Continuous Electrolytic Reduction of Chalcopyrite Slurry,” Journal of Applied Electrochemistry, Vo. 7, No. 2, 1977, pp. 175-179. doi:10.1007/BF00611040
[21] R. S. McMillan, D. J. MacKinnon and J. E. Dutrizac, “Anodic Dissolution of N-Type and P-Type Chalcopyrite,” Journal of Applied Electrochemistry, Vol. 12, No. 6, 1982, pp. 743-757. doi:10.1007/BF00617495
[22] H. Kametani and A. Aoki, “Effect of Suspension Potential on the Oxidation Rate of Copper Concentrate in a Sulfuric Acid Solution,” Metallurgical and Materials Transactions B, Vol. 16, No. 4, 1985, pp. 695-705.
[23] M. Raj?i?-Vujasinovi? and Z. Stankovi?, “The Influence of Cupric Ions on the Rest Potential of Natural Covellite,” Journal of Serbian Chemical Society, Vol. 52, No. 10, 1987, pp. 595-600.
[24] M. Raj?i?-Vujasinovi? and Z. Stankovi?, “Chronopotentiometric Investigations of Anodic Dissolution of Natural Mineral Covellite (CuS),” Erzmetall, Vol. 47, No. 2, 1994, pp. 131-135.
[25] M. Raj?i?-Vujasinovi?, Z. Stevi? and S. Djordjevi?, “Application of Pulse Potential for Oxidation of Natural Mineral Covellite,” Russian Journal of Applied Chemistry, Vol. 67, No. 4, 1994, pp. 594-597.
[26] M. Vukovi?, Z. D. Stankovi?, M. Raj?i?-Vujasinovi? and V. Cvetkovski, “Voltammetric Investigations of Anodic Dissolution of Natural Mineral Chalcopyrite,” Journal of Mining and Metallurgy B: Metallurgy, Vol. 44, No. 1, 2008, pp. 115-124.
[27] Q. Yin, D. J. Vaughan, K. E. R. England and G. H. Kelsall, “Electrochemical Oxidation of Covellite (CuS) in Alkaline Solution,” Journal of Colloid and Interface Science, Vol. 166, No. 1, 1994, pp. 133-142. doi:10.1006/jcis.1994.1280
[28] Q. Yin, G. H. Kelsall, D. J. Vaughan and K. E. R. England, “Atmospheric and Electrochemical Oxidation of the Surface of Chalcopyrite (CuFeS2),” Geochimica et Cosmochimica Acta, Vol. 59, No. 6, 1995, pp. 1091-1100. doi:10.1016/0016-7037(95)00026-V
[29] C. Arbizzani, M. Mastragostino and L. Meneghello, “Characterization by Impedance Spectroscopy of a Polymerbased Supercapacitor,” Electrochimica Acta, Vol. 40, No. 13-14, 1995, pp. 2223-2228. doi:10.1016/0013-4686(95)00167-D
[30] W. G. Pell and B. E. Conway, “Voltammetry at a de Levie Brush Electrode as a Model for Electrochemical Supercapacitor Behavior,” Journal of Electroanalytical Chemistry, Vol. 500, No. 1-2, 2001, pp. 121-133. doi:10.1016/S0022-0728(00)00423-X
[31] P. Kurzweil and H-J. Fischle, “A New Monitoring Method for Electrochemical Aggregates by Impedance Spectroscopy,” Journal of Power Sources, Vol, 127, No. 1-2, 2004, pp. 331-340. doi:10.1016/j.jpowsour.2003.09.030
[32] Z. Stevi?, “Supercapacitors Based on Copper Sulfides,” Ph.D. Thesis, Electrotechnical Faculty, Belgrade, 2004.
[33] Z. Stevi?, Z. Andjelkovi? and D. Anti?, “A New PC and LabVIEW Package Based System for Electrochemical Investigations,” Sensors, Vol. 8, No. 3, 2008, pp. 18191831. doi:10.3390/s8031819
[34] Z. Stevi?, M. Raj?i?-Vujasinovi? and A. Dekanski, “Estimation of Parameters Obtained by Electrochemical Impedance Spectroscopy on Systems Containing High Capacities,” Sensors, Vol. 9, No. 9, 2009, pp. 7365-7373. doi:10.3390/s90907365

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.