[1]
|
P. Simon and Y. Gogotsi, “Materials for Electrochemical Capacitors,” Nature Materials, Vol. 7, No. 11, 2008, pp. 845-854. doi:10.1038/nmat2297
|
[2]
|
M. Winter and R. J. Brodd, “What Are Batteries, Fuel Cells, and Supercapacitors?” Chemical Reviews, Vol. 104, No. 10, 2004, pp. 4245-4269. doi:10.1021/cr020730k
|
[3]
|
L. L. Zhang and X. S. Zhao, “Carbon-Based Materials as Supercapacitor Electrodes,” Chemical Society Reviews, Vol. 38, No. 9, 2009, pp. 2520-2531. doi:10.1039/b813846j
|
[4]
|
Y. P. Zhai, Y. Q. Dou, D. Y. Zhao, P. F. Fulvio, R. T. Mayes and S. Dai, “Carbon Materials for Chemical Capacitive Energy Storage,” Advanced Materials, Vol. 23, No. 42, 2011, pp. 4828-4850. doi:10.1002/adma.201100984
|
[5]
|
A. Burke, “R&D Considerations for the Performance and Application of Electrochemical Capacitors,” Electrochimica Acta, Vol. 53, No. 3, 2007, pp. 1083-1091. doi:10.1016/j.electacta.2007.01.011
|
[6]
|
R. Kotz and M. Carlen, “Principles and Applications of Electrochemical Capacitors,” Electrochimica Acta, Vol. 45, No. 15-16, 2000, pp. 2483-2498. doi:10.1016/S0013-4686(00)00354-6
|
[7]
|
J. R. Miller and P. Simon, “Electrochemical Capacitors for Energy Management,” Science, Vol. 321, No. 5889, 2008, pp. 651-652. doi:10.1126/science.1158736
|
[8]
|
D. N. Futaba, K. Hata, T. Yamada, T. Hiraoka, Y. Ha-yamizu, Y. Kakudate, O. Tanaike, H. Hatori, M. Yumura and S. Iijima, “Shape-Engineerable and Highly Densely Packed Single-Walled Carbon Nanotubes and Their Ap- plication as Super-Capacitor Electrodes,” Nature Materi- als, Vol. 5, No. 12, 2006, pp. 987-994. doi:10.1038/nmat1782
|
[9]
|
J. Liu, G. Z. Cao, Z. G. Yang, D. H. Wang, D. Dubois, X. D. Zhou, G. L. Graff, L. R. Pederson and J. G. Zhang, “Oriented Nanostructures for Energy Conversion and Storage,” ChemSusChem, Vol. 1, No. 8-9, 2008, pp. 676- 697. doi:10.1002/cssc.200800087
|
[10]
|
A. Du Pasquier, I. Plitz, S. Menocal and G. Amatucci, “A Comparative Study of Li-Ion Battery, Supercapacitor and Nonaqueous Asymmetric Hybrid Devices for Automotive Applications,” Journal of Power Sources, Vol. 115, No. 1, 2003, pp. 171-178. doi:10.1016/S0378-7753(02)00718-8
|
[11]
|
B. E. Conway, “Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications,” Kluwer-Plenum, New York, 1999.
|
[12]
|
J. M. Miller, “Ultracapacitor Applications,” The Institution of Engineering and Technology, Stevenage, 2011.
|
[13]
|
H. L. Wang, J. T. Robinson, G. Diankov and H. J. Dai, “Nanocrystal Growth on Graphene with Various Degrees of Oxidation,” Journal of the American Chemical Society, Vol. 132, No. 10, 2010, pp. 3270-3271. doi:10.1021/ja100329d
|
[14]
|
S. Iijima, “Helical Microtubules of Graphitic Carbon,” Nature, Vol. 354, No. 6348, 1991, pp. 56-58. doi:10.1038/354056a0
|
[15]
|
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films,” Science, Vol. 306, No. 5696, 2004, pp. 666-669. doi:10.1126/science.1102896
|
[16]
|
E. Frackowiak and F. Beguin, “Carbon Materials for the Electrochemical Storage of Energy in Capacitors,” Carbon, Vol. 39, No. 6, 2001, pp. 937-950. doi:10.1016/S0008-6223(00)00183-4
|
[17]
|
T. W. Ebbesen, H. J. Lezec, H. Hiura, J. W. Bennett, H. F. Ghaemi and T. Thio, “Electrical Conductivity of Individual Carbon Nanotubes,” Nature, Vol. 382, No. 6586, 1996, pp. 54-56. doi:10.1038/382054a0
|
[18]
|
Y. Wang, Z. Q. Shi, Y. Huang, Y. F. Ma, C. Y. Wang, M. M. Chen and Y. S. Chen, “Supercapacitor Devices Based on Graphene Materials,” Journal of Physical Chemistry C, Vol. 113, No. 30, 2009, pp. 13103-13107. doi:10.1021/jp902214f
|
[19]
|
H. V. Helmholtz, “Ueber einige Gesetze der Vertheilung elektrischer Str?me in korperlichen Leitern mit Anwendung auf die thierisch-elektrischen Versuche,” Annalen der Physik, Vol. 165, No. 6, 1853, pp. 211-233. doi:10.1002/andp.18531650603
|
[20]
|
O. Barbieri, M. Hahn, A. Herzog and R. Kotz, “Capacitance Limits of High Surface Area Activated Carbons for Double Layer Capacitors,” Carbon, Vol. 43, No. 6, 2005, pp. 1303-1310. doi:10.1016/j.carbon.2005.01.001
|
[21]
|
E. Raymundo-Pinero, K. Kierzek, J. Machnikowski and F. Beguin, “Relationship between the Nanoporous Texture of Activated Carbons and Their Capacitance Properties in Different Electrolytes,” Carbon, Vol. 44, No. 12, 2006, pp. 2498-2507. doi:10.1016/j.carbon.2006.05.022
|
[22]
|
K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquerol and T. Siemieniewska, “Reporting Physisorption Data for Gas Solid Systems with Special Reference to the Determination of Surface-Area and Porosity (Recommendations 1984),” Pure and Applied Chemistry, Vol. 57, No. 4, 1985, pp. 603-619. doi:10.1351/pac198557040603
|
[23]
|
J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon and P. L. Taberna, “Anomalous Increase in Carbon Capacitance at Pore Sizes Less than 1 Nanometer,” Science, Vol. 313, No. 5794, 2006, pp. 1760-1763. doi:10.1126/science.1132195
|
[24]
|
J. S. Huang, B. G. Sumpter and V. Meunier, “A Universal Model for Nanoporous Carbon Supercapacitors Applicable to Diverse Pore Regimes, Carbon Materials, and Electrolytes,” Chemistry—A European Journal, Vol. 14, No. 22, 2008, pp. 6614-6626. doi:10.1002/chem.200800639
|
[25]
|
J. S. Huang, B. G. Sumpter and V. Meunier, “Theoretical model for Nanoporous Carbon Supercapacitors,” Angewandte Chemie-International Edition, Vol. 47, No. 3, 2008, pp. 520-524. doi:10.1002/anie.200703864
|
[26]
|
N. L. Wu, “Nanocrystalline Oxide Supercapacitors,” Materials Chemistry and Physics, Vol. 75, No. 1-3, 2002, pp. 6-11. doi:10.1016/S0254-0584(02)00022-6
|
[27]
|
X. P. Dong, W. H. Shen, J. L. Gu, L. M. Xiong, Y. F. Zhu, Z. Li and J. L. Shi, “MnO2-Embedded-in-Mesoporous-Carbon-Wall Structure for Use as Electrochemical Capacitors,” Journal of Physical Chemistry B, Vol. 110, No. 12, 2006, pp. 6015-6019. doi:10.1021/jp056754n
|
[28]
|
J. P. Zheng, P. J. Cygan and T. R. Jow, “Hydrous Ruthenium Oxide as an Electrode Material for Electrochemical Capacitors,” Journal of the Electrochemical Society, Vol. 142, No. 8, 1995, pp. 2699-2703. doi:10.1149/1.2050077
|
[29]
|
C. C. Hu, K. H. Chang, M. C. Lin and Y. T. Wu, “Design and Tailoring of the Nanotubular Arrayed Architecture of Hydrous RuO2 for Next Generation Supercapacitors,” Nano Letters, Vol. 6, No. 12, 2006, pp. 2690-2695. doi:10.1021/nl061576a
|
[30]
|
T. Brezesinski, J. Wang, S. H. Tolbert and B. Dunn, “Ordered Mesoporous Alpha-MoO3 with Iso-Oriented Nanocrystalline Walls for Thin-Film Pseudocapacitors,” Na- ture Materials, Vol. 9, No. 2, 2010, pp. 146-151. doi:10.1038/nmat2612
|
[31]
|
S. L. Xiong, C. Z. Yuan, M. F. Zhang, B. J. Xi and Y. T. Qian, “Controllable Synthesis of Mesoporous Co3O4 Nanostructures with Tunable Morphology for Application in Supercapacitors,” Chemistry—A European Journal, Vol. 15, No. 21, 2009, pp. 5320-5326. doi:10.1002/chem.200802671
|
[32]
|
S. Boukhalfa, K. Evanoff and G. Yushin, “Atomic Layer Deposition of Vanadium Oxide on Carbon Nanotubes for High-Power Supercapacitor Electrodes,” Energy & Environmental Science, Vol. 5, No. 5, 2012, pp. 6872-6879. doi:10.1039/C2EE21110F
|
[33]
|
V. Subramanian, H. W. Zhu and B. Q. Wei, “Nanostructured MnO2: Hydrothermal Synthesis and Electrochemical Properties as a Supercapacitor Electrode Material,” Journal of Power Sources, Vol. 159, No. 1, 2006, pp. 361-364. doi:10.1016/j.jpowsour.2006.04.012
|
[34]
|
Y. T. Wang, A. H. Lu, H. L. Zhang and W. C. Li, “Syn- thesis of Nanostructured Mesoporous Manganese Oxides with Three-Dimensional Frameworks and Their Application in Supercapacitors,” Journal of Physical Chemistry C, Vol. 115, No. 13, 2011, pp. 5413-5421. doi:10.1021/jp110938x
|
[35]
|
H. Y. Lee and J. B. Goodenough, “Supercapacitor Behavior with KCl Electrolyte,” Journal of Solid State Chemistry, Vol. 144, No. 1, 1999, pp. 220-223. doi:10.1006/jssc.1998.8128
|
[36]
|
A. Rudge, J. Davey, I. Raistrick, S. Gottesfeld, J. P. Ferraris, “Conducting Polymers as Active Materials in Electrochemical Capacitors,” Journal of Power Sources, Vol. 47, No. 1-2, 1994, pp. 89-107. doi:10.1016/0378-7753(94)80053-7
|
[37]
|
K. Jurewicz, S. Delpeux, V. Bertagna, F. Beguin and E. Frackowiak, “Supercapacitors from Nanotubes/Polypyrrole Composites,” Chemical Physics Letters, Vol. 347, No. 1-3, 2001, pp. 36-40. doi:10.1016/S0009-2614(01)01037-5
|
[38]
|
H. Y. Mi, X. G. Zhang, X. G. Ye and S. D. Yang, “Preparation and Enhanced Capacitance of Core-Shell Polypyrrole/Polyaniline Composite Electrode for Supercapacitors,” Journal of Power Sources, Vol. 176, No. 1, 2008, pp. 403-409. doi:10.1016/j.jpowsour.2007.10.070
|
[39]
|
Y. G. Wang, H. Q. Li and Y. Y. Xia, “Ordered Whisker-like Polyaniline Grown on the Surface of Mesoporous Carbon and Its Electrochemical Capacitance Performance,” Advanced Materials, Vol. 18, No. 19, 2006, pp. 2619-2623. doi:10.1002/adma.200600445
|
[40]
|
H. Y. Mi, X. G. Zhang, S. Y. An, X. G. Ye and S. D. Yang, “Microwave-Assisted Synthesis and Electrochemical Capacitance of Polyaniline/Multi-Wall Carbon Nanotubes Composite,” Electrochemistry Communications, Vol. 9, No. 12, 2007, pp. 2859-2862. doi:10.1016/j.elecom.2007.10.013
|
[41]
|
L. Chen, C. Z. Yuan, H. Dou, B. Gao, S. Y. Chen, X. G. Zhang, “Synthesis and Electrochemical Capacitance of Core-Shell Poly(3,4-ethylenedioxythiophene)/Poly(Sodium 4-Styrenesulfonate)-Modified Multiwalled Carbon Nanotube Nanocomposites,” Electrochimica Acta, Vol. 54, No. 8, 2009, pp. 2335-2341. doi:10.1016/j.electacta.2008.10.071
|
[42]
|
K. H. An, K. K. Jeon, J. K. Heo, S. C. Lim, D. J. Bae and Y. H. Lee, “High-Capacitance Supercapacitor Using a Nanocomposite Electrode of Single-Walled Carbon Nanotube and Polypyrrole,” Journal of the Electrochemical Society, Vol. 149, No. 8, 2002, pp. A1058-A1062. doi:10.1149/1.1491235
|
[43]
|
C. Arbizzani, M. Mastragostino and F. Soavi, “New Trends in Electrochemical Supercapacitors,” Journal of Power Sources, Vol. 100, No. 1-2, 2001, pp. 164-170. doi:10.1016/S0378-7753(01)00892-8
|
[44]
|
E. Frackowiak, V. Khomenko, K. Jurewicz, K. Lota and F. Beguin, “Supercapacitors Based on Conducting Polymers/Nanotubes Composites,” Journal of Power Sources, Vol. 153, No. 2, 2006, pp. 413-418. doi:10.1016/j.jpowsour.2005.05.030
|
[45]
|
K. V. E. Frackowiak and F. Beguin, “Determination of the Specific Capacitance of Conducting Polymer/Nanotubes Composite Electrodes Using Different Cell Configurations,” Electrochimica Acta, Vol. 50, No. 12, 2005, pp. 2499-2506. doi:10.1016/j.electacta.2004.10.078
|
[46]
|
M. D. Stoller and R. S. Ruoff, “Best Practice Methods for Determining an Electrode Material’s Performance for Ultracapacitors,” Energy & Environmental Science, Vol. 3, No. 9, 2010, pp. 1294-1301. doi:10.1039/C0EE00074D
|
[47]
|
Z. C. Wu, Z. H. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard and A. G. Rinzler, “Transparent, Conductive Carbon Nanotube Films,” Science, Vol. 305, No. 5688, 2004, pp. 1273-1276. doi:10.1126/science.1101243
|
[48]
|
B. Dan, G. C. Irvin and M. Pasquali, “Continuous and Scalable Fabrication of Transparent Conducting Carbon Nanotube Films,” ACS Nano, Vol. 3, No. 4, 2009, pp. 835-843. doi:10.1021/nn8008307
|
[49]
|
A. R. Boccaccini, J. Cho, J. A. Roether, B. J. C. Thomas, E. J. Minay and M. S. P. Shaffer, “Electrophoretic Deposition of Carbon Nanotubes,” Carbon, Vol. 44, No. 15, 2006, pp. 3149-3160. doi:10.1016/j.carbon.2006.06.021
|
[50]
|
D. H. Zhang, K. Ryu, X. L. Liu, E. Polikarpov, J. Ly, M. E. Tompson and C. W. Zhou, “Transparent, Conductive, and Flexible Carbon Nanotube Films and Their Application in Organic Light-Emitting Diodes,” Nano Letters, Vol. 6, No. 9, 2006, pp. 1880-1886. doi:10.1021/nl0608543
|
[51]
|
H. Gu and T. M. Swager, “Fabrication of Free-Standing, Conductive, and Transparent Carbon Nanotube Films,” Advanced Materials, Vol. 20, No. 23, 2008, pp. 4433-4437. doi:10.1002/adma.200801062
|
[52]
|
K. Flavin, I. Kopf, E. Del Canto, C. Navio, C. Bittencourt and S. Giordani, “Controlled Carboxylic Acid Introduction: A Route to Highly Purified Oxidised Single-Walled Carbon Nanotubes,” Journal of Materials Chemistry, Vol. 21, No. 44, 2011, pp. 17881-17887. doi:10.1039/c1jm12217g
|
[53]
|
J. Ge, G. H. Cheng and L. W. Chen, “Transparent and Flexible Electrodes and Supercapacitors Using Polyaniline/Single-Walled Carbon Nanotube Composite Thin Films,” Nanoscale, Vol. 3, No. 8, 2011, pp. 3084-3088. doi:10.1039/c1nr10424a
|
[54]
|
L. B. Hu, D. S. Hecht and G. Gruner, “Carbon Nanotube Thin Films: Fabrication, Properties, and Applications,” Chemical Reviews, Vol. 110, No. 10, 2010, pp. 5790-5844. doi:10.1021/cr9002962
|
[55]
|
C. M. Niu, E. K. Sichel, R. Hoch, D. Moy and H. Tennent, “High Power Electrochemical Capacitors Based on Carbon Nanotube Electrodes,” Applied Physics Letters, Vol. 70, No. 11, 1997, pp. 1480-1482. doi:10.1063/1.118568
|
[56]
|
K. H. An, W. S. Kim, Y. S. Park, Y. C. Choi, S. M. Lee, D. C. Chung, D. J. Bae, S. C. Lim and Y. H. Lee, “Supercapacitors Using Single-Walled Carbon Nanotube Electrodes,” Advanced Materials, Vol. 13, No. 7, 2001, pp. 497-500. doi:10.1002/1521-4095(200104)13:7<497::AID-ADMA497>3.0.CO;2-H
|
[57]
|
T. Kitano, Y. Maeda and T. Akasaka, “Preparation of Transparent and Conductive Thin Films of Carbon Nanotubes Using a Spreading/Coating Technique,” Carbon, Vol. 47, No. 15, 2009, pp. 3559-3565. doi:10.1016/j.carbon.2009.08.027
|
[58]
|
L. B. Hu, H. Wu and Y. Cui, “Printed Energy Storage Devices by Integration of Electrodes and Separators into Single Sheets of Paper,” Applied Physics Letters, Vol. 96, No. 18, 2010, Article ID: 183502. doi:10.1063/1.3425767
|
[59]
|
L. B. Hu, J. W. Choi, Y. Yang, S. Jeong, F. La Mantia, L. F. Cui and Y. Cui, “Highly Conductive Paper for Energy-Storage Devices,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 106, No. 51, 2009, pp. 21490-21494. doi:10.1073/pnas.0908858106
|
[60]
|
J. Cho, K. Konopka, K. Rozniatowski, E. Garcia-Lecina, M. S. P. Shaffer and A. R. Boccaccini, “Characterisation of Carbon Nanotube Films Deposited by Electrophoretic Deposition,” Carbon, Vol. 47, No. 1, 2009, pp. 58-67. doi:10.1016/j.carbon.2008.08.028
|
[61]
|
S. F. Pei, J. H. Du, Y. Zeng, C. Liu and H. M. Cheng, “The Fabrication of a Carbon Nanotube Transparent Conductive Film by Electrophoretic Deposition and Hot-Pressing Transfer,” Nanotechnology, Vol. 20, No. 23, 2009, Article ID: 235707.
|
[62]
|
C. S. Du and N. Pan, “High Power Density Supercapacitor Electrodes of Carbon Nanotube Films by Electrophoretic Deposition,” Nanotechnology, Vol. 17, No. 21, 2006, pp. 5314-5318. doi:10.1088/0957-4484/17/21/005
|
[63]
|
S. S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell and H. J. Dai, “Self-Oriented Regular Arrays of Carbon Nanotubes and Their Field Emission Properties,” Science, Vol. 283, No. 5401, 1999, pp. 512-514. doi:10.1126/science.283.5401.512
|
[64]
|
K. Hata, D. N. Futaba, K. Mizuno, T. Namai, M. Yumura and S. Iijima, “Water-Assisted Highly Efficient Synthesis of Impurity-Free Single-Walled Carbon Nanotubes,” Ab- stracts of Papers of the American Chemical Society, Vol. 229, No. 5700, 2005, pp. U967-U967. doi:10.1126/science.1104962
|
[65]
|
J. Kong, H. T. Soh, A. M. Cassell, C. F. Quate, H. J. Dai, “Synthesis of Individual Single-Walled Carbon Nanotubes on Patterned Silicon Wafers,” Nature, Vol. 395, No. 6705, 1998, pp. 878-881. doi:10.1038/27632
|
[66]
|
A. Ural, Y. M. Li and H. J. Dai, “Electric-Field-Aligned Growth of Single-Walled Carbon Nanotubes on Surfaces,” Applied Physics Letters, Vol. 81, No. 18, 2002, pp. 3464-3466. doi:10.1063/1.1518773
|
[67]
|
S. Han, X. L. Liu and C. W. Zhou, “Template-Free Direc-tional Growth of Single-Walled Carbon Nanotubes on a- and r-Plane Sapphire,” Journal of the American Chemical Society, Vol. 127, No. 15, 2005, pp. 5294-5295. doi:10.1021/ja042544x
|
[68]
|
S. J. Kang, C. Kocabas, T. Ozel, M. Shim, N. Pimparkar, M. A. Alam, S. V. Rotkin and J. A. Rogers, “High-Performance Electronics Using Dense, Perfectly Aligned Arrays of Single-Walled Carbon Nanotubes,” Nature Nanotechnology, Vol. 2, No. 4, 2007, pp. 230-236. doi:10.1038/nnano.2007.77
|
[69]
|
R. N. Das, B. Liu, J. R. Reynolds and A. G. Rinzler, “Engineered Macroporosity in Single-Wall Carbon Nanotube Films,” Nano Letters, Vol. 9, No. 2, 2009, pp. 677-683. doi:10.1021/nl803168s
|
[70]
|
A. Izadi-Najafabadi, S. Yasuda, K. Kobashi, T. Yamada, D. N. Futaba, H. Hatori, M. Yumura, S. Iijima and K. Hata, “Extracting the Full Potential of Single-Walled Carbon Nanotubes as Durable Supercapacitor Electrodes Operable at 4 V with High Power and Energy Density,” Advanced Materials, Vol. 22, No. 35, 2010, pp. E235- E241. doi:10.1002/adma.200904349
|
[71]
|
B. Kim, H. Chung and W. Kim, “High-Performance Supercapacitors Based on Vertically Aligned Carbon Nanotubes and Nonaqueous Electrolytes,” Nanotechnology, Vol. 23, No. 15, 2012, Article ID: 155401. doi:10.1088/0957-4484/23/15/155401
|
[72]
|
M. Toupin, T. Brousse and D. Belanger, “Charge Storage Mechanism of MnO2 Electrode Used in Aqueous Electrochemical Capacitor,” Chemistry of Materials, Vol. 16, No. 16, 2004, pp. 3184-3190. doi:10.1021/cm049649j
|
[73]
|
X. Zhao, C. Johnston and P. S. Grant, “A Novel Hybrid Supercapacitor with a Carbon Nanotube Cathode and an Iron Oxide/Carbon Nanotube Composite Anode,” Journal of Materials Chemistry, Vol. 19, No. 46, 2009, pp. 8755- 8760. doi:10.1039/b909779a
|
[74]
|
R. F. Zhou, C. Z. Meng, F. Zhu, Q. Q. Li, C. H. Liu, S. S. Fan and K. L. Jiang, “High-Performance Supercapacitors Using a Nanoporous Current Collector Made from Super-Aligned Carbon Nanotubes,” Nanotechnology, Vol. 21, No. 34, 2010, Article ID: 345701. doi:10.1088/0957-4484/21/34/345701
|
[75]
|
S. L. Chou, J. Z. Wang, S. Y. Chew, H. K. Liu and S. X. Dou, “Electrodeposition of MnO2 Nanowires on Carbon Nanotube Paper as Free-Standing, Flexible Electrode for Supercapacitors,” Electrochemistry Communications, Vol. 10, No. 11, 2008, pp. 1724-1727. doi:10.1016/j.elecom.2008.08.051
|
[76]
|
P. C. Chen, G. Z. Shen, Y. Shi, H. T. Chen and C. W. Zhou, “Preparation and Characterization of Flexible Asymmetric Supercapacitors Based on Transition-Metal- Oxide Nanowire/Single-Walled Carbon Nanotube Hybrid Thin-Film Electrodes,” Acs Nano, Vol. 4, No. 8, 2010, pp. 4403-4411. doi:10.1021/nn100856y
|
[77]
|
M. D. Stoller, S. J. Park, Y. W. Zhu, J. H. An and R. S. Ruoff, “Graphene-Based Ultracapacitors,” Nano Letters, Vol. 8, No. 10, 2008, pp. 3498-3502. doi:10.1021/nl802558y
|
[78]
|
H. A. Becerril, J. Mao, Z. Liu, R. M. Stoltenberg, Z. Bao and Y. Chen, “Evaluation of Solution-Processed Reduced Graphene Oxide Films as Transparent Conductors,” ACS Nano, Vol. 2, No. 3, 2008, pp. 463-470. doi:10.1021/nn700375n
|
[79]
|
O. Volotskova, I. Levchenko, A. Shashurin, Y. Raitses, K. Ostrikov and M. Keidar, “Single-Step Synthesis and Magnetic Separation of Graphene and Carbon Nanotubes in Arc Discharge Plasmas,” Nanoscale, Vol. 2, No. 10, 2010, pp. 2281-2285. doi:10.1039/c0nr00416b
|
[80]
|
M. Eizenberg and J. M. Blakely, “Carbon Monolayer Phase Condensation on Ni(111),” Surface Science, Vol. 82, No. 1, 1979, pp. 228-236. doi:10.1016/0039-6028(79)90330-3
|
[81]
|
X. S. Li, W. W. Cai, J. H. An, S. Kim, J. Nah, D. X. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo and R. S. Ruoff, “Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils,” Science, Vol. 324, No. 5932, 2009, pp. 1312-1314. doi:10.1126/science.1171245
|
[82]
|
S. Stankovich, R. D. Piner, S. T. Nguyen and R. S. Ruoff, “Synthesis and Exfoliation of Isocyanate-Treated Graphene Oxide Nanoplatelets,” Carbon, Vol. 44, No. 15, 2006, pp. 3342-3347. doi:10.1016/j.carbon.2006.06.004
|
[83]
|
A. Reina, X. T. Jia, J. Ho, D. Nezich, H. B. Son, V. Bulovic, M. S. Dresselhaus and J. Kong, “Large Area, Few- Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition,” Nano Letters, Vol. 9, No. 1, 2009, pp. 30-35. doi:10.1021/nl801827v
|
[84]
|
M. J. Allen, V. C. Tung and R. B. Kaner, “Honeycomb Carbon: A Review of Graphene,” Chemical Reviews, Vol. 110, No. 1, 2010, pp. 132-145. doi:10.1021/cr900070d
|
[85]
|
A. Srivastava, C. Galande, L. Ci, L. Song, C. Rai, D. Jariwala, K. F. Kelly and P. M. Ajayan, “Novel Liquid Precursor-Based Facile Synthesis of Large-Area Continuous, Single, and Few-Layer Graphene Films,” Chemistry of Materials, Vol. 22, No. 11, 2010, pp. 3457-3461. doi:10.1021/cm101027c
|
[86]
|
J. J. Yoo, K. Balakrishnan, J. S. Huang, V. Meunier, B. G. Sumpter, A. Srivastava, M. Conway, A. L. M. Reddy, J. Yu, R. Vajtai and P. M. Ajayan, “Ultrathin Planar Graphene Supercapacitors,” Nano Letters, Vol. 11, No. 4, 2011, pp. 1423-1427. doi:10.1021/nl200225j
|
[87]
|
W. S. Hummers and R. E. Offeman, “Preparation of Graphitic Oxide,” Journal of the American Chemical Society, Vol. 80, No. 6, 1958, pp. 1339-1339. doi:10.1021/ja01539a017
|
[88]
|
Y. W. Zhu, S. Murali, M. D. Stoller, K. J. Ganesh, W. W. Cai, P. J. Ferreira, A. Pirkle, R. M. Wallace, K. A. Cychosz, M. Thommes, D. Su, E. A. Stach and R. S. Ruoff, “Carbon-Based Supercapacitors Produced by Activation of Graphene,” Science, Vol. 332, No. 6037, 2011, pp. 1537-1541. doi:10.1126/science.1200770
|
[89]
|
C. G. Liu, Z. N. Yu, D. Neff, A. Zhamu and B. Z. Jang, “Graphene-Based Supercapacitor with an Ultrahigh Energy Density,” Nano Letters, Vol. 10, No. 12, 2010, pp. 4863-4868. doi:10.1021/nl102661q
|
[90]
|
V. Strong, S. Dubin, M. F. El-Kady, A. Lech, Y. Wang, B. H. Weiller and R. B. Kaner, “Patterning and Electronic Tuning of Laser Scribed Graphene for Flexible All-Carbon Devices,” ACS Nano, Vol. 6, No. 2, 2012, pp. 1395- 1403. doi:10.1021/nn204200w
|
[91]
|
M. F. El-Kady, V. Strong, S. Dubin and R. B. Kaner, “Laser Scribing of High-Performance and Flexible Graphene-Based Electrochemical Capacitors,” Science, Vol. 335, No. 6074, 2012, pp. 1326-1330. doi:10.1126/science.1216744
|
[92]
|
Q. Cheng, J. Tang, J. Ma, H. Zhang, N. Shinya and L. C. Qin, “Graphene and Nanostructured MnO2 Composite Electrodes for Supercapacitors,” Carbon, Vol. 49, No. 9, 2011, pp. 2917-2925. doi:10.1016/j.carbon.2011.02.068
|
[93]
|
Q. Wu, Y. X. Xu, Z. Y. Yao, A. R. Liu and G. Q. Shi, “Supercapacitors Based on Flexible Graphene/Polyaniline Nanofiber Composite Films,” ACS Nano, Vol. 4, No. 4, 2010, pp. 1963-1970. doi:10.1021/nn1000035
|
[94]
|
V. C. Tung, L. M. Chen, M. J. Allen, J. K. Wassei, K. Nelson, R. B. Kaner and Y. Yang, “Low-Temperature Solution Processing of Graphene-Carbon Nanotube Hybrid Materials for High-Performance Transparent Conductors,” Nano Letters, Vol. 9, No. 5, 2009, pp. 1949- 1955. doi:10.1021/nl9001525
|
[95]
|
Q. Cheng, J. Tang, J. Ma, H. Zhang, N. Shinya and L. C. Qin, “Graphene and Carbon Nanotube Composite Electrodes for Supercapacitors with Ultra-High Energy Density,” Physical Chemistry Chemical Physics, Vol. 13, No. 39, 2011, pp. 17615-17624. doi:10.1039/c1cp21910c
|
[96]
|
M. Keidar, A. Shashurin, J. A. Li, O. Volotskova, M. Kundrapu, T. Sen Zhuang, “Arc Plasma Synthesis of Carbon Nanostructures: Where Is the Frontier?” Journal of Physics D-Applied Physics, Vol. 44, No. 17, 2011, Article ID: 174006. doi:10.1088/0022-3727/44/17/174006
|
[97]
|
M. Keidar, I. Levchenko, T. Arbel, M. Alexander, A. M. Waas and K. Ostrikov, “Increasing the Length of Single-Wall Carbon Nanotubes in a Magnetically Enhanced Arc Discharge,” Applied Physics Letters, Vol. 92, No. 4, 2008, Article ID: 043129. doi:10.1063/1.2839609
|
[98]
|
O. Volotskova, J. A. Fagan, J. Y. Huh, F. R. Phelan, A. Shashurin and M. Keidar, “Tailored Distribution of Single-Wall Carbon Nanotubes from Arc Plasma Synthesis Using Magnetic Fields,” ACS Nano, Vol. 4, No. 9, 2010, pp. 5187-5192. doi:10.1021/nn101279r
|
[99]
|
M. Keidar, I. Levchenko, T. Arbel, M. Alexander, A. M. Waas and K. K. Ostrikov, “Magnetic-Field-Enhanced Syn- thesis of Single-Wall Carbon Nanotubes in Arc Discharge,” Journal of Applied Physics, Vol. 103, No. 9, 2008, Article ID: 094318. doi:10.1063/1.2919712
|
[100]
|
J. Li, O. Volotskova, A. Shashurin and M. Keidar, “Con-trolling Diameter Distribution of Catalyst Nanoparticles in Arc Discharge,” Journal of Nanoscience and Nanotechnology, Vol. 11, No. 11, 2011, pp. 10047-10052. doi:10.1166/jnn.2011.4999
|
[101]
|
J. Li, O. Volotskova, A. Shashurin and M. Keidar, “Cor- relation between Formation of the Plasma Jet and Synthesis of Graphene in Arc Discharge,” IEEE Transactions on plasma Science, Vol. 39, No. 11, 2011, pp. 2366-2367. doi:10.1109/TPS.2011.2160567
|
[102]
|
J. Li, A. Shashurin, M. Kundrapu and M. Keidar, “Si- multaneous Synthesis of Single Wall Carbon Nanotubes and Graphene in a Magnetically-Enhanced Arc Plasma,” Journal of Visualized Experiments, Vol. 60, 2012, p. e3455. doi:10.3791/3455
|
[103]
|
J. Li, X. Cheng, J. Sun, M. Reeves, A. Shashurin and M. Keidar, “Preparation of Resistance Controlled Electrodes of a Paper Based Capacitor with Carbon Nanotubes Graphene Composites in Magnetically Enhanced Arc Discharge,” Unpublished.
|
[104]
|
S. Hu, R. Rajamani and X. Yu, “Flexible Solid-State Paper Based Carbon Nanotube Supercapacitor,” Applied Physics Letters, Vol. 100, No. 10, 2012, Article ID: 104103. doi:10.1063/1.3691948
|
[105]
|
B. G. Choi, J. Hong, W. H. Hong, P. T. Hammond and H. Park, “Facilitated Ion Transport in All-Solid-State Flexible Supercapacitors,” ACS Nano, Vol. 5, No. 9, 2011, pp. 7205-7213. doi:10.1021/nn202020w
|