Oxidation Behavior of Nanostructured TiAlN and AlCrN Thin Coatings on ASTM-SA213-T-22 Boiler Steel


Metals and alloys gets oxidized when exposed to elevated temperatures in air or highly oxidizing environments, such as combustion gas with excess of air or oxygen. They often rely on the oxidation reaction to develop a protective oxide scale to resist corrosion attack. In the present study, nanostructured TiAlN and AlCrN thin films were deposited by physical vapour deposition process on T-22 boiler steel (ASTM-SA213-T-22). Cyclic oxidation studies in air were conducted at 900°C temperature in the laboratory using silicon carbide furnace. The weight gain was measured after each cycle and visually examined the surface morphology of the oxidized samples was studied using FE-SEM with EDAX attachment and XRD analysis. The results obtained showed the better performance of AlCrN coated T-22 boiler steels then the TiAlN coated and uncoated T-22 boiler steel.

Share and Cite:

V. Chawla, A. Chawla, B. Sidhu, S. Prakash and D. Puri, "Oxidation Behavior of Nanostructured TiAlN and AlCrN Thin Coatings on ASTM-SA213-T-22 Boiler Steel," Journal of Minerals and Materials Characterization and Engineering, Vol. 9 No. 11, 2010, pp. 1037-1057. doi: 10.4236/jmmce.2010.911075.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] W. Brandl, G. Marginean, D. Maghet, D. Utu, Surf. & Coat. Technol. 188–189 (2004) 20–26.
[2] L. Fedrizzi , S. Rossi , R. Cristel , P.L. Bonora , Elect. Chem. Acta 49 (2004) 2803–2814.
[3] Harpreet Singh, D. Puri and S. Prakash, Anti. Corros. Method Mater. 52/2 (2005) 84–95.
[4] Harpreet Singh, D. Puri and S. Prakash, International Symposium of Research Students on Materials Science and Engineering, December 20-22, 2004, Indian Institute of Technology Madras, Chennai, India.
[5] G. Bertrand, H. Mahdjoub, C. Meunier, Surf. & Coat. Technol. 126 (2000) 199-209.
[6] L. Cunha, M. Andritschky , L. Rebouta , K. Pischow, Surf. & Coat. Technol. 116–119 (1999) 1152–1160.
[7] Xing-zhao Ding, A.L.K. Tan, X.T. Zeng, C. Wang, T. Yue, C.Q. Sun, Thin Solid Films 516(2008) 5716-5720.
[8] Yun Ha Yoo, Diem Phuong Le, Jung Gu Kim , Sun Kyu Kim, Pham Van Vinh, Thin Solid Films 516 (2008) 3544-3548.
[9] F. Quesada, A. Mari?o, E. Restrepo, Surf. & Coat. Technol. 201 (2006) 2925–2929.
[10] E. Spain, J.C. Avelar-Batista, M. Letch, J. Housden, B. Lerga, Surf. & Coat. Technol. 200 (2005) 1507 – 1513.
[11] J.L. Endrino, G.S. Fox-Rabinovich, A. Reiter, S.V. Veldhuis, R. Escobar Galindo, J.M. Albella, J.F. Marco, Surf. & Coat. Technol. 201 (2007) 4505–4511.
[12] B.R. Marple, J. Voyer, J. F. Bisson, C. Moreau, J. Mater. Process. Technol. 117 (2001), 418-423.
[13] R.A. Mahesh, R. Jayaganthan, S. Prakash, Mater. Sci. Engg. A, 475 (2008) 327-335.
[14] H. Singh, S. Prakash, D. Puri, Mater. Sci. Engg. A, 444 (2007) 242-250.
[15] Buta Singh Sidhu, S. Prakash, Surf. & Coat. Technol. 166 (2003) 89-100.
[16] Evans H E, and Taylor M P, Oxid. Met. 55 (1-2) (2001).
[17] Wang B, Gong J, Wang A Y, Sun C, Huang R F, and Wen L S, Surf. & Coat. Technol. 149 (2002) 70-75.
[18] Niranatlumpong P, Ponton C B, and Evans H E, Oxid. Met., 53 (3-4) (2000) 241.
[19] Heath G R, Heimgartner P, Irons G, Miller R, and Gustafsson S, Mater. Sci. Forum, 251-254 (1997) 809.
[20] Xing-zhao Ding, A.L.K. Tan, X.T. Zeng, C. Wang, T. Yue, C.Q. Sun, Thin Solid Films 516, issue 16(2008) 5716-5720.
[21] Kazuhisa Fujita, Surf. & Coat. Technol. 196 (2005) 139– 144.
[22] W. Kalss , A. Reiter, V. Derflinger, C. Gey, J.L. Endrino, Int. J. Refract. Metals & Hard Mater. 24 (2006) 399–404.
[23] B.Y. Man, L. Guzman, A. Miotello, M. Adami, Surf. & Coat. Technol. 180 –181 (2004) 9–14.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.