Surface and Physicochemical Characterization of Phosphates Vivianite, Fe2(PO4)3 and Hydroxyapatite, Ca5(PO4)3OH


Hydroxyapatite is a calcium phosphate in the apatite group. It has numerous applications due to its particular properties including the sorption of metallic ions. This makes it useful for the treatment of contaminated groundwater and for soil decontamination. The least expensive source of hydroxyapatite for synthesis is bovine bone, since this is a waste material. Vivianite is an iron phosphate which has received little study. Like hydroxyapatite, it has particular properties. This paper describes the method of obtaining these phosphates; calcium phosphate from bovine bone, and iron phosphate by synthesis. Also described are the methods of purifying the materials and characterization of these two phosphates by X-ray diffraction, infrared analysis, thermogravimetric and differential scanning calorimetric analysis, scanning electron microscopy, and surface area by the BET method. Physicochemical characteristics of hydroxyapatite obtained from bovine bone are described, and preliminary results are presented of an investigation into whether hydroxyapatite and iron phosphate are suitable as a permeable reactive barrier for the treatment of metallic and radionuclide contaminants.

Share and Cite:

D. Luna-Zaragoza, E. Romero-Guzmán and L. Reyes-Gutiérrez, "Surface and Physicochemical Characterization of Phosphates Vivianite, Fe2(PO4)3 and Hydroxyapatite, Ca5(PO4)3OH," Journal of Minerals and Materials Characterization and Engineering, Vol. 8 No. 8, 2009, pp. 591-609. doi: 10.4236/jmmce.2009.88052.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Ferguson, J. E., 1990, The Heavy Elements, In: Chemistry, Environmental Impact and Health Effects, Oxford, Pergamon Press., 211–212.
[2] Hasan, M. A., Moore, R.C., Holt, K. C., and Hasan, A. A., 2003, “Overview on backfill materials and permeable reactive barriers for nuclear waste disposal facilities.” Sandia National Laboratories. New México, USA, pp. 1–27.
[3] Romero, G. E. T., 2000, “Migración de uranio en la zona no saturada.” Ph.D. Thesis, Toluca México, Universidad Autónoma del Estado de México.
[4] Romero, G. E. T., Ordonez, R. En., Esteller, A. M. V., Rojas, H. A., Reyes, G. L. R. and Ordonez, R. Ed., 2006, “Contamination of corn growing areas due to intensive fertilization in the high plane of Mexico.” Water Air and Soil Pollution, Vol. 175, pp. 77–98.
[5] Drot, R., Lindecker, C., Fourest, B. and Simoni, E., 1998, “Surface characterization of zirconium and thorium phosphate compounds.” New J. Chem., pp. 1105–1109.
[6] Romero, G. E. T., Esteller, A. M. V. and Ordonez, R. E., 2002, “Uranium and phosphate behaviour in the vadose zone of a fertilised corn field.” Journal of Radioanalytical and Nuclear Chemistry, Vol. 254, No. 3, pp. 509–517.
[7] Wang, D., Qian, L., Zhang, M., Xu, J., and Wu, W., 2008, “Sorption of Eu(III) and Am(III) on thorium phosphate diphosphate.” Journal of Nuclear and Radiochemistry, Vol. 30, No. 3, pp.156–161.
[8] Perrone, J., Fourest, B., and Giffaut, E., 2002, “Surface characterization of synthetic and mineral carbonate fluoroapatites.” J. Colloidal and Interface Science, Vol. 249, pp. 441–452.
[9] Badillo, A. V. and Ly, J., 2001, “Retención de especies aniónicas homólogas de dos productos de fisión en una hidroxiapatita.” México Nuclear, Vol. 2, No. 3, pp. 83–92.
[10] Narasaraju, T. S. B., and Phebe, D. E., 1996, “Review, some physicochemical aspects of hydroxyapatite.” Journal of Materials Sciences, Vol. 31, pp. 1–21.
[11] Coughlin, M. J., Grines, J. J. and Kennedy, M. P., 2006, “Coralline Hydroxyapatite bone graft substitute in hind foot.” Foot Ankle Int., Vol. 27, No. 1, pp. 19–22.
[12] Morales, J. G., Burgues, J. J., Boix, T., Fraile, J., and Clemente, R. R. (2001). Precipitation of stoichiometric hydroxyapatite by continuous method. Cryst. Res. Technol., 36(1), 15–26.
[13] Aizawa, M., Howell, F. S., Itatani, K., Yokogawa, Y., Nishizawa, K., Toriyama, M., and Kameyama, T., 2000, “Fabrication of porous ceramic with well-controlled open porous by sintering of fibrous hydroxyapatite.” J. Ceram. Soc. Jpn., Vol. 108, pp. 249–253.
[14] Tanaka, H., Chikazawa, M., Kandori, K., and Ishikawa, T., 2000, “Influence of thermal treatment on the structure of calcium hydroxyapatite.” Phys. Chem. Chem. Phys., Vol. 2, pp.2647.
[15] Panda, R. N., Ming-Fa, H., Chung, R. J., and Chin, T. S., 2001, “X-ray diffractometry and X-ray photoelectron spectroscopy investigations on nanocrystalline hydroxyapatite synthesized by hydroxide gel technique.” Jpn. J. Appl. Phys., Vol. 40, pp. 5030–5035.
[16] Gross, K. A., Berndt, C. C., Stephens, P., and Innebier, R., 1998, “Oxiapatite in hydroxyapatite coating.” J. Mater. Sci., Vol. 33, pp. 3985–3991.
[17] Verges, M. A., González, C. F, Martínez, G. M., Solier, J. D., Cachadina, I., and Matijevic, E., 2000, “A new route for the synthesis of calcium deficient hydroxyapatites with low Ca/P ratio: Both spectroscopic and electric.” J. Mater. Res., Vol. 15, pp. 2526–2533.
[18] Andersson, J., Areva, S., Bernd, S., and Lindén, M., 2005, “Sol-gel synthesis of multifunctional hierachically porous silica/apatite composition.” Biomaterials, Vol. 26, No. 34, pp. 6827–6835.
[19] Wang, Y., Zhang, S., Wei, K., Zhao, N., Chen, J., and Wang, X., 2006, “Hydrothermal synthesis of hydroxyapatite nanopowders using cationic surfactant as a template.” Material Letters, Vol. 60, No. 12, pp. 1484–1487.
[20] Liu, J., Li, K., Wang, H., Zhu, M., and Yam, H., 2004, “Rapid formation of hydroxyapatite nanostructures by microwave irradiation.” Chemical Physiscs Letters, Vol. 396, No. 4–6, pp. 429–432.
[21] Aizawa, M., Hanazawa, T., Itatani, K., Howell, F. S., and Kishioka, A., 1999, “Characterization of hydroxyapatite powders prepared by ultrasonic spray-pyrolysis technique.” J. Mater. Sci., Vol. 34, pp. 2865–2873.
[22] Silva, C. C., Rocha, H. H., Freire, F. N. A., Santos, M. R. P., Saboia, K. A., Góes, J. C., and Sombra, A. S. B., 2005, “Hydroxyapatite screen-printed thick films: optical and electrical properties.” Material, Chemistry and Physics, Vol. 92, No. 1, pp. 260–268.
[23] Chen, C. W., Riman, R. E., Kener, S. T., and Kelly, B., 2004, “Mechanochemicalhydrothermal synthesis of hydroxypapatite from noionic surfactant emulsions precursors.” J. Crystal Growth., Vol. 270, No. 3–4, pp. 615–623.
[24] Kim, W., and Saito, F., 2001, “Sonochemical synthesis of hydroxylapatite from H3PO4 solution with Ca(OH) 2.” Ultrasonic Sonochemistry, Vol. 8, pp. 65–88.
[25] Danilchenko, S. N., Pokrovskiy, V. A., Bogatyrov, V. M., Sukhodub, L. F., and Sulkio-Cleff, B., 2005, “Carbonate location in bone tissue mineral by X-ray diffraction and temperatureprogrammed desorption mass spectrometry.” Cryst. Res. Technol., Vol. 40, No. 7, 692–697.
[26] Fontanetto, H. B., 1993, Efecto del método de aplicación del fertilizante fosfórico en maíz a dos niveles de disponibilidad hídrica. Tesis Magister Scientiae. Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, Argentina, 61.
[27] Dzombak, D. A., and Morel, F.M.M., 1990, “Surface Complexation Modeling, In: Hydrous Ferric Oxide”, (J. Wiley & Sons Eds), New York.
[28] Noh, J. S., and Schwarz, J.A., 1990, “Estimation of surface ionization constant for amphoteric solids.” Journal of Colloid and Interface Science, Vol. 139, pp. 139–148.
[29] Mostafa, N. Y., 2005, “Characterization, thermal stability and sintering of hydroxyapatite powders prepared by different routes.” Materials Chemistry and Physics, Vol. 94, pp. 333–341.
[30] Bayliss, P., 1986, Mineral Powder Diffraction File Date Book: Swarthmore, PA, Joint Committee on Powder Diffraction Standards (JCPDS).
[31] Pramanik, S., Kumar, A. A., Rai, K.N., and Garg, A., 2007, “Development of high strength hydroxyapatite by solid-state-sintering process.” Ceramics International, Vol. 33, pp. 419–426.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.