Numerical Solution of Integro-Differential Equations with Local Polynomial Regression


In this paper, we try to find numerical solution of y'(x)= p(x)y(x)+g(x)+λ∫ba K(x, t)y(t)dt, y(a)=α. a≤x≤b, a≤t≤b or y'(x)= p(x)y(x)+g(x)+λ∫xa K(x, t)y(t)dt, y(a)=α. a≤x≤b, a≤t≤b by using Local polynomial regression (LPR) method. The numerical solution shows that this method is powerful in solving integro-differential equations. The method will be tested on three model problems in order to demonstrate its usefulness and accuracy.

Share and Cite:

L. Su, T. Yan, Y. Zhao, F. Li and R. Liu, "Numerical Solution of Integro-Differential Equations with Local Polynomial Regression," Open Journal of Statistics, Vol. 2 No. 3, 2012, pp. 352-355. doi: 10.4236/ojs.2012.23043.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] B. Asady and M. T. Kajani, “Direct Method for Solving Integro Differential Equations Using Hybrid Fourier and Block-Pluse Functions,” International Journal of Computer Mathematics, Vol. 82, No. 7, 2007, pp. 889-895. doi:10.1080/00207160412331336044
[2] D. F. Han and X. F. Shang, “Numerical Solution of Integro-Differential Equations by Using CAS Wavelet Operational Matrix of Integration,” Vol. 156, No. 2, Applied Mathematics Computation, 2007, pp. 460-466. doi:10.1016/j.amc.2007.04.048
[3] A. Golbabai and M. Javidi, “Application of He’s Homotopy Perturbation Method for nth-Order Integro-Differential Equations,” Applied Mathematics Computation, Vol. 190, No. 2, 2007, pp. 1409-1416. doi: 10.1016/j.amc.2007.02.018
[4] A. Karamete and M. Sezer, “A Taylor Collocation Method for the Solution of Linear Integro-Differential Equations,” International Journal of Computer Mathematics, Vol. 79, No. 9, 2002, pp. 987-1000. doi:10.1080/00207160216116
[5] H. Jaradat, O. Alsayyed and S. Al-Shara, “Numerical Solution of Linear Integro-Differential Equations 1,” Journal of Mathematics Statistics, Vol. 4, No. 4, 2008, pp. 250-254. doi:
[6] K. Maleknejad and F. Mizaee, “Numerical Solution of Integro-Differential Equations by Using Rationalized Haar Functions Method,” International Journal of System Mathematics, Vol. 35, No. 10, 2006, pp. 1735-1744. doi 10.1108/03684920610688694
[7] J. Pour-Mahmoud, M. Y. Rahimi-Ardabili and S. Shahmorad, “Numerical Solution of the System of Fredholm Integro-Differential Equations by the Tau Method,” Applied Mathematics Computation, Vol. 168, No. 1, 2005, pp. 465-478. doi:10.1016/j.amc.2004.09.026
[8] M. T. Rashed, “Numerical Solution of Functional DifferenTial, Integral and Integro-Differential Equations,” Applied Numerical Mathematics, Vol. 156, No. 2, 2004, pp. 485-492. doi:10.1016/j.amc.2003.08.021
[9] H. Caglar and N. Caglar, “Numerical Solution of Integral Equations by Using Local Polynomial Regression,” Journal of Computational Analysis and Applications, Vol. 10, No. 2, 2008, pp. 187-195.
[10] L. Y. Su, Y. Y. Zhao and T. S. Yan, “Two-Stage Method Based on local Polynomial Fitting for a Linear Hetero- scedastic Regression Model and Its Application in Economics,” Discrete Dynamics in Nature and Society, Vol. 2012, 2012, Article ID 696927. doi:10.1155/2012/696927
[11] L. Y. Su, “Prediction of Multivariate Chaotic Time Series with Local Polynomial Fitting,” Computers Mathematics with Applications, Vol. 59, No. 2, 2010, pp. 737-744. doi:10.1016/j.camwa.2009.10.019
[12] L. Y. Su, Y. J. Ma and J. J. Li, “Application of Local Polynomial Estimation in Suppressing Strong Chaotic Noise,” Chinese Physics B, 2012, Vol. 21, No. 2, 2012. doi:10.1088/1674-1056/21/2/020508
[13] J. Fan and I. Gijbels, “Local Polynomial Modelling and Its Applications, Vol. 66 of Monographs on Statistics and Applied Probability,” Chapman Hall, London, 1996.
[14] J. Fan and Q. Yao, “Nonlinear Time Series: Nonparametric and Parametric Methods, Springer Series in Statistics,” Springer, Berlin, 2003.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.