Hematopoietic stem cells from peripheral blood the perspective of non-mobilized peripheral blood


The peripheral blood is a major source of hematopoietic stem cells. Almost for two decades the peripheral blood has been mobilized, in order to enhance the CD34+ concentration. The isolated stem cells from the mobilized peripheral blood are used as an alternative, or in addition to bone marrow derived stem cells. In this paper, a new perspective is being discussed; the use of non-mobilized peripheral blood as an alternative source for hematopoietic progenitor cells. The number of isolated hematopoietic stem cells is evaluated using flow cytometry. The viability can be evaluated using the trypan blue exclusion test, the flow cytometry or automated assays. The isolated hematopoietic stem cells could be used for ex vivo expansion either in static systems or in proper bioreactor systems, prior to cryopreservation and/or transplantation.

Share and Cite:

Katsares, V. , Paparidis, Z. , Nikolaidou, E. , Petsa, A. , Karvounidou, I. , Ardelean, K. , Peroulis, N. , Grigoriadis, N. and Grigoriadis, J. (2010) Hematopoietic stem cells from peripheral blood the perspective of non-mobilized peripheral blood. Health, 2, 519-527. doi: 10.4236/health.2010.26078.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] [1] Champlin, R.E., Schmitz, N., Horowitz, M.M., Chapuis, B., Chopra, R., Cornelissen, J.J., Gale, R.P., Goldman, J.M., Loberiza, F.R., Hertenstein, B., Klein, J.P., Monstserrat, E., Zhang, M.J., Ringdeon, O., Tomany, S.C., Rowlings, P.A., Van Hoef, M.E. and Gratwohl, A. (2000) Blood stem cells compared with bone marrow as a source of hematopoietic cells for allogeneic transplantation. Blood, 95(12), 3702-3709.
[2] Bensinger, W.I., Clift, R., Martin, P., Appelbaum, F.R., Demirer, T., Gooley, T., Lilleby, K., Rowley, S., Sanders, J., Storb, R. and Buckner, C.D. (1996) Allogeneic peripheral blood stem cell transplantation in patients with advanced hematologic malignancies: a retrospective comparison with marrow transplantation. Blood, 88(7), 2794-2800.
[3] Smith, T.J., Hillner, B.E., Schmitz, N., Linch, D.C., Dreger, P., Goldstone, A.H., Boogaerts, M.A., Ferrant, A., Link, H., Zander, A., Yanovich, S., Kitchin, R. and Erder, M.H. (1997) Economic analysis of a randomized clinical trial to compare filgrastrim-mobilized peripheral-blood progenitor cell transplantation and autologous bone marrow transplantation in patients with Hodgkin’s and non-Hodgkin’s lymphoma. Journal of Clinical Oncolology, 15(1), 5-10.
[4] Beyer, J., Schwella, N., Zingsem, J., Strohscheer, I., Schwaner, I., Oettle, H., Serke, S., Huhn, D. and Siegert, W. (1995) Hematopoietic rescue after high-dose chemotherapy using autologous peripheral-blood progenitor cells or bone marrow: a randomized comparison. Journal of Clinical Oncolology, 13(6), 1328-1335.
[5] Hartmann, O., Le Corroller, A.G., Blaise, D., Michon, J., Philip, I., Norol, F., Janvier, M., Louis Pico, J., Baranzelli, M.C., Rubie, H., Coze, C., Pinna, A., Meresse, V. and Benhamou, E. (1997) Peripheral blood stem cell and bone marrow transplantation for solid tumors and lymphomas: hematologic recovery and costs—a randomized, controlled trial. Annals of Internal Medicine, 126(8), 600-607.
[6] Schmitz, N., Linch, D.C., Dreger, P., Goldstone, A.H., Boogaerts, M.A., Ferrant, A., Demuynck, H.M., Link, H., Zander, A. and Barge, A. (1996) Randomised trial of filgrastim-mobilised peripheral blood progenitor cell transplant- tation versus autologous bone-marrow transplantation in lymphoma patients. Lancet, 347(8998), 353-357.
[7] Cutler, C. and Antin, J.H. (2001) Peripheral Blood Stem Cells for Allogeneic Transplantation: A Review. Stem Cells, 19(2), 108-117.
[8] Sutherland, H.J., Hogge, D.E., Landsdorp, P.M., Phillips, G.L., Eaves, A.C. and Eaves, C.J. (1995) Quantitation, mobilization, and clinical use of long-term culture-initia- ting cells in blood cell autografts. Journal of Hematotherapy, 4(1), 3-10.
[9] Siena, S., Schiavo, R., Pedrazzoli, P. and Carlo-Stella, C. (2000) Therapeutic relevance of CD34 cell dose in blood cell transplantation for cancer therapy. Journal of Clini- cal Oncolology, 18(6), 1360-1377.
[10] Keeney, M., Chin-Yee, I., Weir, K., Popma, J., Nayar, R. and Sutherland, D.R. (1998) Single platform flow cytometric absolute CD34+ cell counts based on the ISHAGE guidelines. International Society of Hematotherapy and Graft Engineering. Cytometry, 34(2), 61-70.
[11] Katsares, V., Petsa, A., Felesakis, A., Paparidis, Z., Niko- laidou, E., Gargani, S., Karvounidou, I., Ardelean, K.A., Grigoriadis, N. and Grigoriadis, J. (2009) A rapid and accurate method for the stem cell viability evaluation. The case of the thawed umbilical cord blood. Lab Medicine, 40(9), 557-560.
[12] Makino, S., Harada, M., Akashi, K., Taniguchi, S., Shi- buya, T., Inaba, S. and Niho, Y. (1991) A simplified method for cryopreservation of peripheral blood stem cells at –80°C without rate-controlled freezing. Bone Marrow Transplantation, 8(4), 239-244.
[13] Bakken, Α.Μ. (2006) Cryopreserving Human Peripheral Blood Progenitor Cells. Current Stem Cell Research & Therapy, 1(1), 47-54.
[14] Tarasov, A.I., Petrenko, A.Y. and Jones, D.R. (2004) The osmotic characteristics of human fetal liver-derived hematopoietic stem cell candidates. Cryobiology, 48(3), 333-340.
[15] Lewis, J.P., Passovoy, M., Conti, S.A., McFate, P.A., Trobaugh, F.E. (1967) The effect of cooling regimens on the transplantation potential of marrow. Transfusion, 7(1), 17-32.
[16] Meryman, H.T., Williams, R.J. and Douglas, M.S. (1977) Freezing injury from “solution effects” and its prevention by natural or artificial cryoprotection. Cryobiology, 14(3), 287-302.
[17] Cilloni, D., Garau, D., Regazzi, E., Sammarelli, G., Savoldo, B., Caramatti, C., Mangoni, L., Rizzoli, V. and Carlo-Stella, C. (1999) Primitive hematopoietic progenitors within mobilized blood are spared by uncontrolled rate freezing. Bone Marrow Transplantation, 23(5), 497- 503.
[18] Halle, P., Tournilhac, O., Knopinska-Posluszny, W., Justyna, K., Gembara, P., Boiret, N., Rapatel, C., Berger, M., Travade, P., Angielski, S., Bonhomme, J. and Déocq, F. (2001) Uncontrolled-rate freezing and storage at –80 0C, with only 3.5% DMSO in cryoprotective solution for 109 autologous peripheral blood progenitor cell transplantations. Transfusion, 41(5), 667-673.
[19] Katayama, Y., Yano, T., Bessho, A., Deguchi, S., Sunami, K., Mahmut, N., Shinagawa, K., Omoto, E., Makino, S., Miyamoto, T., Mizuno, S., Fukuda, T., Eto, T., Fujisaki, T., Ohno, Y., Inaba, S., Niho, Y. and Harada, M. (1997) The effects of a simplified method for cryopreservation and thawing procedures on peripheral blood stem cells. Bone Marrow Transplantation, 19(3), 283-287.
[20] Perez-Oteyza, J., Bornstein, R., Corral, M., Hermosa, V., Alegre, A., Torrabadella, M., Ramos, P., Garcia, J., Odriozola, J. and Navarro, J.L. (1998) Controlled-rate versus uncontrolled-rate cryopreservation of peripheral blood progenitor cells: A prospective multicenter study. Group for cryobiology and biology of bone marrow transplantation (CBTNO), Spain. Haematologica, 83(11), 1001-1005.
[21] Paczkowska, E. (2002) Freezing of umbilical blood cells in mechanical freezers (–800C). Annales Academiae Medicae Stetinensis, 48, 117-133.
[22] Walter, Z., Szostek, M., Weglarska, D., Raguszewska, D., Jabłoński, M., Lorenz, F. and Skotnicki, A.B. (1999) Methods for freezing, thawing and viability estimation of hemopoietic stem cells. Przeglad Lekarski, 56(Suppl 1), 34-39.
[23] Goldman, J.M., Th’ng, K.H., Park, D.S., Spiers, A.S., Lowenthal, R.M. and Ruutu, T. (1978) Collection, cryopreservation and subsequent viability of haemopoietic stem cells intended for treatment of chronic granulocytic leukaemia in blast-cell transformation. British Journal of Haematology, 40(2), 185-195.
[24] Liseth, K., Ersvær, E., Abrahamsen, J.F., Nesthus, I., Ryningen, A., and Bruserud, Ø. (2009) Long-term cryo- preservation of autologous stem cell grafts: a clinical and experimental study of hematopoietic and immunocom- petent cells. Transfusion, 49(8), 1709-1719.
[25] Akkök, Ç.A., Holte, M.R., Tangen, J.M., Østenstad, B. and Bruserud, Ø. (2009) Hematopoietic engraftment of dimethyl sulfoxide–depleted autologous peripheral blood progenitor cells. Transfusion, 49(2), 354-361.
[26] Rollig, C., Babatz, J., Wagner, I., Maiwald , A., Schwarze , V., Ehninger, G. and Bornhäuser, M. (2002) Thawing of cryopreserved mobilized peripheral blood-comparison between water bath and dry warming device. Cytother- apy, 4(6), 551-555.
[27] Mavroudis, D., Read, E., Cottler-Fox, M., Couriel, D., Molldrem, J., Carter, C., Yu, M., Dunbar, C. and Barrett, J. (1996) CD34+ cell dose predicts survival, posttransplant morbidity, and rate of hematologic recovery after allogeneic marrow transplants for hematologic malignancies. Blood, 88(8), 3223-3229.
[28] Miflin, G., Russell, N.H., Hutchinson, R.M., Morgan, G., Potter, M., Pagliuca, A., Marsh, J., Bell, A., Milligan, D., Lumley, M., Cook, G. and Franklin, I. (1997) Allogeneic peripheral blood stem cell transplantation for haematological malignancies—an analysis of kinetics of engraftment and GVHD risk. Bone Marrow Transplantation, 19(1), 9-13.
[29] Shpall, E.J., Champlin, R. and Glaspy, J.A. (1998) Effect of CD34+ peripheral blood progenitor cell dose on hematopoietic recovery. Biology of Blood and Marrow Transplantation, 4(2), 84-92.
[30] Vij, R., Brown, R., Shenoy, S., Haug, J.S., Kaesberg, D., Adkins, D., Goodnough, L.T., Khoury, H. and DiPersio, J. (2000) Allogeneic peripheral blood stem cell transplanta- tion following CD34+ enrichment by density gradient separation. Bone Marrow Transplantation, 25(12), 1223- 1228.
[31] McGlave, P.B., De Fabritiis, P., Deisseroth, A., Goldman, J., Barnett, M., Reiffers, J., Simonsson, B., Carella, A. and Aeppli, D. (1994) Autologous transplants for chronic myelogenous leukaemia: results from eight transplant groups. Lancet, 343(8911), 1486-1488.
[32] Reiffers, J., Goldman, J., Meloni, G., Cahn, J.Y. and Grat- wohl, A. (1994) On behalf of the Chronic Leukemia Working Party of the EBMT. Autologous stem cell transplantation in chronic myelogenous leukemia: a retrospective analysis of the European Group for Bone Marrow Transplantation. Bone Marrow Transplantation, 14(3), 407-410.
[33] Burnett, A.K., Goldstone, A.H., Stevens, R.M., Hann. I.M., Rees, J.K., Gray, R.G. and Whealtley, K. (1998) Randomised comparison of addition of autologous bone- marrow transplantation to intensive chemotherapy for acute myeloid leukaemia in first remission: results of MRC AML 10 trial. Lancet, 351(9104), 700-708.
[34] De Witte, T., Van Biezen, A., Hermans, J., Labopin, M., Runde, V., Or, R., Meloni, G., Mauri, S.B., Carella, A., Apperley, J., Gratwohl, A. and Laporte, J.P. (1997) Autologous bone marrow transplantation for patients with myelodysplastic syndrome (MDS) or acute myeloid leu kemia following MDS. Blood, 90(10), 3853-3857.
[35] Harousseau, J.L., Cahn, J.Y., Pignon, B., Witz, F., Mil- pied, N., Delain, M., Lioure, B., Lamy, T., Desablens, B., Guilhot, F., Caillot, D., Abgrall, J.F., Francois, S., Briere, J., Guyotat, D., Casassus, P., Audhuy, B., Tellier, Z., Hurteloup, P. and Herve, P. (1997) Comparison of autolo- gous bone marrow transplantation and intensive chemo- therapy as postremission therapy in adult acute myeloid leukemia. Blood, 90(8), 2978-2986.
[36] Niwa, A., Umeda, K., Awaya, T., Yui, Y., Matsubara, H., Hiramatsu, H., Watanabe, K.I., Adachi, S., Takashi, I., Shinji, U. and Tatsutoshi N. (2009) Successful autologous peripheral blood stem cell transplantation with a double- conditioning regimen for recurrent hepatoblastoma after liver transplantation. Pediatric Transplantation, 13(2), 259-262.
[37] Nevskaya, T., Ananieva, L., Bykovskaia, S., Eremin, I., Karandashov, E., Khrennikov, J., Mach, E., Zaprjagaeva, M., Guseva, N. and Nassonov, E. (2009) Autologous pro- genitor cell implantation as a novel therapeutic intervene- tion for ischaemic digits in systemic sclerosis. Rheuma tology, 48(1), 61-64.
[38] Mishra, V., Andresen, S., Brinch, L., Kvaløy, S., Ernst, P., Lønset, M.K., Tangen, J.M., Wikelund, J., Flatum, C., Baggerød, E., Helle, B., Vaaler, S. and Hagen, T.P. (2005) Cost of autologous peripheral blood stem cell transplant- tation: the Norwegian experience from a multicenter cost study. Bone Marrow Transplantation; 35(12), 1149-1153.
[39] Van Agthoven, M., Vellenga, E., Fibbe, W.E., Kingma, T. and De Groot, C.A.U. (2001) Cost analysis and quality of life assessment comparing patients undergoing autologous peripheral blood stem cell transplantation or autologous bone marrow transplantation for refractory or relapsed non-Hodgkin’s lymphoma or Hodgkin’s disease: A prospective randomised trial. European Journal of Cancer, 37(14), 1781-1789.
[40] Ghosh, K., Gosavi, S., Pathare, A., Madkaikar, M., Rao, V.B. and Mohanty, D. (2002) Low cost autologous peripheral blood stem cell transplantation performed in a municipal hospital for a patient with plasma cell leukaemia. Clinical and Laboratory Haematology, 24(3), 187- 190.
[41] Reich-Slotky, R., Colovai, A.I., Semidei-Pomales, M., Patel, N., Cairo, M., Jhang, J. and Schwartz, J. (2008) Determining post-thaw CD34+ cell dose of cryopreserved haematopoietic progenitor cells demonstrates high recovery and confirms their integrity. Vox Sanguinis, 94 (4), 351-357.
[42] Haas, R., Witt, B., Goldschmidt, H., Hohaus, S., Frue- hauf, S., Wannenmacher, M. and Hunstein, W. (1995) Sustained long-term hematopoiesis after myeloablative therapy with peripheral blood progenitor cell support. Blood, 85(12), 3754-3761.
[43] Ketterer, N., Salles, G., Raba, M., Espinouse, D., Sonet, A., Tremisi, P., Dumontet, C., Moullet, I., Eljaafari-Corbin, A., Neidhardt-Berard, E.-M., Bouafia, F. and Coiffier, B. (1998) High CD34+ cell counts decrease hematologic toxicity of autologous peripheral blood progenitor cell transplantation. Blood, 91(9), 3148-3155.
[44] Bittencourt, H., Rocha, V., Chevret, S., Socie, G., Esperou, H., Devergie, A., Dal Cortivo, L., Marolleau, J-P., Garnier, F., Ribaud, P. and Gluckman, E. (2002) Association of CD34 cell dose with hematopoietic recovery, infections, and other outcomes after HLA-identical sibling bone marrow transplantation. Blood, 99(8), 2726-2733.
[45] De Lima, M., McMannis, J., Gee, A., Komanduri, K., Couriel, D., Andersson, B.S., Hosing, C., Khouri, I., Jones, R., Champlin, R., Karandish, S., Sadeghi, T., Peled, T., Grynspan, F., Daniely, Y., Nagler, A. and Shpall, E.J. (2008) Transplantation of ex vivo expanded cord blood cells using the copper chelator tetraethyllenepentamine: a phase I/II clinical trial. Bone Marrow Transplantation, 41(9), 771-778.
[46] Briddell, R.A., Kern, B.P., Zilm, K.L., Stoney, G.B. and McNiece, I.K. (1997) Purification of CD34+ cells is essential for optimal ex vivo expansion of umbilical cord blood cells. Journal of Hematotherapy, 6(2), 145-150.
[47] Laroche, V., McKenna, D.H., Moroff, G., Schierman, T., Kadidlo, D. and McCullough, J. (2005) Cell loss and recovery in umbilical cord blood processing: a comparison of postthaw and postwash samples. Transfusion, 45(12), 1909-1916.
[48] El Beshlawy, A., Metwally, H.G., El Khalek, K.A., Zayed, R.A., Hammoud, R.F. and Mousa, S.M. (2009) The Effect of Freezing on the Recovery and Expansion of Umbilical Cord Blood Hematopoietic Stem Cells. Experimental and Clinical Transplantation, 7(1), 50-55.
[49] Rossmanith, T., Schröder, B., Bug, G., Müller, P., Klenner, T., Knaus, R., Hoelzer, D. and Ottmann O.G. (2001) Interleukin 3 improves the ex vivo expansion of primitive human cord blood progenitor cells and maintains the en- graftment potential of SCID repopulating cells. Stem Cells, 19(4), 313-320.
[50] Yang, H., Zhao, H., Acker, J.P., Liu, J.Z., Akabutu, J. and McGann, L.E. (2005) Effect of dimethyl sulfoxide on post-thaw viability assessment of CD45+ and CD34+ cells of umbilical cord blood and mobilized peripheral blood. Cryobiology, 51(2), 165-175.
[51] Moezzi, L., Pourfathollah, A.A., Alimoghaddam, K., Soleimani, M. and Ardjmand A. (2005) The effect of cryopreservation on clonogenic capacity and in vitro expansion potential of umbilical cord blood progenitor cells. Transplant Proceedings, 37(10), 4500-4503.
[52] McNiece, I., Jones, R., Cagnoni, P., Bearman, S., Nieto, Y. and Shpall, E.J. (1999) Ex vivo expansion of hematopoietic progenitor cells: preliminary results in breast cancer. Hematological Cellular Therapy, 41(2), 82-86.
[53] Koller, M.R., Manchel, I., Maher, R.J., Goltry, K.L., Armstrong, R.D. and Smith, A.K. (1998) Clinical-scale human umbilical cord blood cell expansion in a novel automated perfusion culture system. Bone Marrow Trans- plantation, 21(7), 653-663.
[54] Piacibello, W., Gammaitoni, L., Bruno, S., Gunetti, M., Fagioli, F., Cavalloni, G. and Aglietta, M. (2000) Negative influence of IL3 on the expansion of human cord blood in vivo long-term repopulating stem cells. Journal of Hematotherapy & Stem Cell Research, 9(6), 945-956.
[55] Henon, P., Sovalat, H., Becker, M., Arkam, Y., Ojeda- Uribe, M., Raidot, J.P., Husseini, F., Wunder, E., Bourderont, D. and Audhuy, B. (1998) Primordial role of CD34+/38- cells in early and late trilineage haemopoietic engraftment after autologous blood cell transplantation. British Journal Haematology, 103(2), 568-581.
[56] Henon, P.H., Sovalat, H. and Bourderont, D. (2001) Importance of CD34+ cell subsets in autologous PBSC trans- plantation: the mulhouse experience using CD34+. Journal of Biological Regulators and Homeostatic Ag- ents, 15, 62-67.
[57] Ishikawa, F., Livingston, A.G., Minamiguchi, H., Wingard, J.R. and Ogawa, M., (2003) Human cord blood long-term engrafting cells are CD34+CD38-. Leukemia, 17(5), 960-964.
[58] Peled, T., Mandel, J., Goudsmid, R.N., Landor, C., Hasson, N., Harati, D., Austin, M., Hasson, A., Fibach, E., Shpall, E.J. and Nagler, A. (2004) Pre-clinical development of cord blood-derived progenitor cell graft expanded ex vivo with cytokines and the polyamine copper chelator tetraethylenepentamine. Cytotherapy, 6(4), 344- 355.
[59] Lam, A.C., Li, K., Zhang, X.B., Li, C.K., Fok, T.F., Chang, A.M.Z., James, A.E., Tsang, K.S. and Yuen, M.P. (2001) Preclinical ex vivo expansion of cord blood he- matopoietic stem and progenitor cells: duration of culture; the media, serum supplements, and growth factors used; and engraftment in NOD/SCID mice. Transfusion, 41 (12), 1567-1576.
[60] Kögler, G., Nürnberger, W., Fischer, J., Niehues, T., Somville, T., Göbel, U. and Wernet, P. (1999) Simultaneous cord blood transplantation of ex vivo expanded together with non-expanded cells for high risk leukemia. Bone Marrow Transplantation, 24(4), 397-403.
[61] Bertolini, F., Battaglia, M., Pedrazzoli, P., Prada, G.D., Lanza, A., Soligo, D., Caneva, L., Sarina, B., Murphy, S., Thomas, T. and Della Cuna, G.R. (1997) Megakaryocytic progenitors can be generated ex vivo and safely adminis- tered to autologous peripheral blood progenitor cell transplant recipients. Blood, 89(8), 2679-2688.
[62] Williams, S.F., Lee, W.J., Bender, J.G., Zimmerman, T., Swinney, P., Blake, M., Carreon, J., Schilling, M., Smith, S., Williams, D.E., Oldham, F. and Van Epps D. (1996) Se- lection and expansion of peripheral blood CD34+ cells in autologous stem cell transplantation for breast cancer. Blood, 87(5), 1687-1691.
[63] Stiff, P., Chen, B., Franklin, W., Oldenberg, D., Hsi, E., Bayer, R., Shpall, E., Douville, J., Mandalam, R., Mal- hotra, D., Muller, T., Armstrong, R.D. and Smith A. (2000) Autologous transplantation of ex vivo expanded bone marrow cells grown from small aliquots after high-dose chemotherapy for breast cancer. Blood, 95(6), 2169-2174.
[64] Ruggieri, L., Heimfeld, S. and Broxmeyer, H.E. (1994) Cytokine-dependent ex vivo expansion of early subsets of CD34+ cord blood myeloid progenitors is enhanced by cord blood plasma, but expansion of the more mature subsets of progenitors is favored. Blood Cells, 20(2-3), 436-454.
[65] Bertolini, F., Lazzari, L., Lauri, E., Corsini, C. and Sirchia, G. (1994) Cord blood plasma mediated ex vivo expansion of hematopoietic progenitor cells. Bone Marrow Transplantation, 14(3), 347-353.
[66] Li, N., Feugier, P., Serrurrier, B., Latger-Cannard, V., Lesesve, J.F., Stoltz, J.F. and Eljaafari, A. (2007) Human mesenchymal stem cells improve ex vivo expansion of adult human CD34+ peripheral blood progenitor cells and decrease their allostimulatory capacity. Experimental Hematology, 35(3), 507-515.
[67] Devine, S.M. (2002) Mesenchymal stem cells: will they have a role in the clinic? Journal of Cellular Biochemis- try-Supplement, 28, 73-79.
[68] Deans, R.J. and Moseley, A.B. (2000) Mesenchymal stem cells: biology and potential clinical uses. Experimental Hematology, 28(8), 875-884.
[69] Kadereit, S., Deeds, L.S., Haynesworth, S.E., Koc, O.N., Kozik, M.M., Szekely, E., Daum-Woods, K., Goetchius, G.W., Fu, P., Welniak, L.A., Murphy, W.J. and Laughlin, M.J. (2002) Expansion of LTC-ICs and maintenance of p21 and BCL-2 expression in cord blood CD34+/CD38- early progenitors cultured over human MSCs as a feeder layer. Stem Cells, 20(6), 573-582.
[70] Koh, S.H., Choi, H.S., Park, E.S., Kang, H.J., Ahn, H.S. and Shin, H.Y. (2005) Co-culture of human CD34+ cells with mesenchymal stem cells increases the survival of CD34+ cells against the 5-aza-deoxycytidine-or tricho- statin A-induced cell death. Biochemical and Biophysical Research Communications, 329(3), 1039-1045.
[71] Bennaceur-Griscelli, A., Pondarre, C., Schiavon, V., Vainchenker, W. and Coulombel, L. (2001) Stromal cells retard the differentiation of CD34+/CD38low/neg human primitive progenitors exposed to cytokines independent of their mitotic history. Blood, 97(2), 435-441.
[72] Liu, Y., Liu, T. , Fan, X., Ma, X. and Cui, Z. (2006) Ex vivo expansion of hematopoietic stem cells derived from umbilical cord blood in rotating wall vessel. Journal of Biotechnology, 124(3), 592-601.
[73] Nielsen, L.K. (1999) Bioreactors for hematopoietic cell culture. Annual Review of Biomedical Engineering, 1(1), 129-152.
[74] Cabrita, G.J., Ferreira, B.S., da Silva, C.L., Goncalves, R., Almeida-Porada, G. and Cabral, J.M. (2003) Hematopoietic stem cells: from the bone to the bioreactor. Trends in Biotechnology, 21(5), 233-240.
[75] Cabral, J.M.S. (2001) Ex vivo expansion of hematopoi- etic stem cells in bioreactors. Biotechnology Letters, 23 (10), 741-751.
[76] Hammond, T.G. and Hammond, J.M. (2001). Optimized suspension culture: the rotating wall vessel. American Journal of Physiology-Renal Physiology, 281(1), F12- F25.
[77] Plett, P.A., Abonour, R., Frankovitz, S.M. and Orschell, C.M. (2004) Impact of modeled microgravity on migration, differentiation, and cell cycle control of primitive human hematopoietic progenitor cells. Experimental Hematology, 32(8), 773-781.
[78] Sytkowski, A.J. and Davis, K.L. (2001) Erythroid cell growth and differentiation in vitro in the simulated microgravity environment of the NASA rotating wall vessel bioreactor. In Vitro Cellular and Developmental Biology-Animal, 37(2), 79-83.
[79] Plett, P.A., Frankovitz, S.M., Abonour, R. and Orschell- Traycoff, C.M. (2001) Proliferation of human hemato- poietic bone marrow cells in simulated microgravity. In Vitro Cellular and Developmental Biology-Animal, 37(2), 73-78.
[80] Martin, Y. and Vermette, P. (2005) Bioreactors for tissue mass culture: design, characterization, and recent ad- vances. Biomaterials, 26(35), 7481-7503.
[81] Ohi, S., Roach, A.N., Ramsahai, S., Kim, B.C., Fitzger- ald, W., Riley, D.A. and Gonda, S.R. (2004) The hematopoi- etic stem cell therapy for exploration of deep space. New Frontiers & Future Concepts. AIP Conference Proceedings, 699, 938-950.
[82] Andrade-Zaldívar, H., Santos, L. and Antonio De León Rodríguez, A. (2008) Expansion of human hematopoietic stem cells for transplantation: trends and perspectives. Cytotechnology, 56(3), 151-160.
[83] Delaney, C., Heimfeld, S., Brashem-Stein, C., Voorhies, H., Manger, R.L. and Bernstein, I.D. (2010) Notch-mediated expansion of human cord blood progenitor cells capable of rapid myeloid reconstitution. Nature Medicine, 16, 232-236.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.