Dissociation between Performances in Water Maze and Spontaneous Alternation in BALB/C versus A/J Mice


Learning processes are extensively studied in behavioral neuroscience. As experimental models, Morris Water Maze (MWM) and Spontaneous Alternation (SA) represent two of the most frequently used laboratory tests to respectively address spatial vs non-spatial tasks. Several factors have been shown to impact on those learning, including strain, gender, apparatus, conditioning, vision, lighting conditions and stress level. In order to focus on the later, we compared the acquisition of two learning tasks (MWM and SA) in BALB/c and A/J mice, which are known as fearful and stress-sensitive strains. Here, we report that BALB/c mice exhibited higher performances than A/J mice in the MWM (i.e. spatial reference memory task), whereas A/J mice performed better in the SA (i.e. spatial working memory task). These results indicate dissociated processes in the acquisition of spatial vs non-spatial tasks, and emphasize a varying influence of emotional reactivity on different forms of cognition.

Share and Cite:

Celestine, J. , Tanti, A. and Aubert, A. (2012) Dissociation between Performances in Water Maze and Spontaneous Alternation in BALB/C versus A/J Mice. Journal of Behavioral and Brain Science, 2, 156-161. doi: 10.4236/jbbs.2012.22018.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] J. LeDoux, “The Emotional Brain: The Mysterious Underpinnings of Emotional Life,” Simon & Schuster, New York, 1996.
[2] J. E. Ledoux, “Emotion Circuits in the Brain,” Annual Review of Neurosciences, Vol. 23, 2000, pp. 155-184. doi:10.1146/annurev.neuro.23.1.155
[3] J. Panksepp, “Evolution Constructed the Potential for Subjective Experience within the Neurodynamics of the Mammalian Brain,” In: P. Ekman and R. J. Davidson, Eds., The Nature of Emotion: Fundamental Questions, 1994, pp. 396-399.
[4] E. S. Paul, E. J. Harding and M. Mendi, “Measuring Emotional Processes in Animals: The Utility of a Cognitive Approach,” Neuroscience and Biobehavioral Reviews, Vol. 29, No. 3, 2005, pp. 469-491. doi:10.1016/j.neubiorev.2005.01.002
[5] A. Cabanac and M. Cabanac, “Heart Rate Response to Gentle Handling of Frog and Lizard,” Behavioural Processes, Vol. 52, No. 2-3, 2000, pp. 89-95. doi:10.1016/S0376-6357(00)00108-X
[6] M. Cabanac, “Emotion and Phylogeny,” Japanese Journal of Physiology, Vol. 49, No. 1, 1999, pp. 1-10. doi:10.2170/jjphysiol.49.1
[7] A. Fischer, M. Radulovic, C. Schrick, F. Sananbenesi, J. Godovac-Zimmermann and J. Radulovic, “Hippocampal Mek/Erk Signaling Mediates Extinction of Contextual Freezing Behavior,” Neurobiology of Learning and Memory, Vol. 87, No. 1, 2007, pp. 149-158. doi:10.1016/j.nlm.2006.08.003
[8] M. R. Holahan and N. M. White, “Amygdala c-Fos Inducting Corresponds to Unconditioned and Conditioned Aversive Stimuli but Not to Freezing,” Behavioural Brain Research, Vol. 152, 2004, pp. 109-120.
[9] N. Graindorge, C. Alves, A. S. Darmaillacq, R. Chichery, L. Dickel and C. Bellanger, “Effects of Dorsal and Ventral Vertical Lobe Electrolytic Lesions on Spatial Learning and Locomotor Activity in Sepia Officinalis,” Behavioral Neuroscience, Vol. 120, No. 5, 2006, pp. 1151-1158. doi:10.1037/0735-7044.120.5.1151
[10] C. Alves, J. G. Boal, R. Chichery and L. Dickel, “Orientation in the Cuttlefish Sepia Officinalis: Response versus Place Learning,” Animal Cognition, Vol. 10, No. 1, 2007, pp. 29-36. doi:10.1007/s10071-006-0027-6
[11] E.-T. Ang, G. S. Dawe, P. T. H. Wong, S. Moochhala and Y.-K. Ng, “Alterations in Spatial Learning and Memory after Forced Exercise,” Brain Research, Vol. 1113, No. 1, 2006, pp. 186-193. doi:10.1016/j.brainres.2006.07.023
[12] R. A. Countryman, N. L. Kaban and P. J. Colombo, “Hippocampal c-Fos Is Necessary for Long-Term Memory of a Socially Transmitted Food Preference,” Neurobiology of Learning and Memory, Vol. 84, No. 3, 2005, p. 175. doi:10.1016/j.nlm.2005.07.005
[13] L. Song, W. Che, W. Min-Wei, Y. Murakami and K. Matsumoto, “Impairment of the Spatial Learning and Memory Induced by Learned Helplessness and Chronic Mild Stress,” Pharmacology, Biochemistry, and Behavior, Vol. 83, No. 2, 2006, pp. 186-193. doi:10.1016/j.pbb.2006.01.004
[14] J. N. Crawley, J. K. Belknap, A. Collins, J. C. Crabbe, W. Frankel, N. Henderson, et al., “Behavioral Phenotypes of Inbred Mouse Strains: Implications and Recommendations for Molecular Studies,” Psychopharmacology, Vol. 132, No. 2, 1997, pp. 107-124. doi:10.1007/s002130050327
[15] K. Klapdor and F. J. van der Staay, “The Morris Water-Escape Task in Mice: Strain Differences and Effects of Intra-Maze Contrast and Brightness,” Physiology & Behavior, Vol. 60, No. 5, 1996, pp. 1247-1254. doi:10.1016/S0031-9384(96)00224-7
[16] P. Carlier and M. Jamon, “Observational Learning in C57BL/6j Mice,” Behavioral Brain Research, Vol. 174, No. 1, 2006, pp. 125-131. doi:10.1016/j.bbr.2006.07.014
[17] R. G. M. Morris, P. Garrud, J. N. P. Rawlins and J. O’Keefe, “Place Navigation Impaired in Rats with Hippocampal Lesions,” Nature, Vol. 297, 1982, pp. 681-683. doi:10.1038/297681a0
[18] R. Lalonde, “The Neurobiological Basis of Spontaneous Alternation,” Neuroscience & Biobehavioral Reviews, Vol. 26, No. 1, 2002, pp. 91-104. doi:10.1016/S0149-7634(01)00041-0
[19] D. Wahlsten, S. F. Cooper and J. C. Crabbe, “Different Rankings of Inbred Mouse Strains on the Morris Maze and a Refined 4-Arm Water Escape Task,” Behavioral Brain Research, Vol. 165, No. 1, 2005, pp. 36-51. doi:10.1016/j.bbr.2005.06.047
[20] D. Wahlsten, N. R. Rustay, P. Metten and J. C. Crabbe, “In Search of a Better Mouse Test,” Trends in Neurosciences, Vol. 26, No. 3, 2003, pp. 132-136. doi:10.1016/S0166-2236(03)00033-X
[21] V. Carola, F. D’Olimpio, E. Brunamonti, A. Bevilacqua, P. Renzi and F. Mangia, “Anxiety-Related Behaviour in C57BL/6-BALB/c Chimeric Mice,” Behavioral Brain Research, Vol. 150, No. 1-2, 2004, pp. 25-32.
[22] V. Kazlauckas, J. Schuh, O. P. Dall’Igna, G. S. Pereira, C. D. Bonan and D. R. Lara, “Behavioral and Cognitive Profile of Mice with High and Low Exploratory Phenotypes,” Behavioural Brain Research, Vol. 162, No. 2, 2005, p. 272. doi:10.1016/j.bbr.2005.03.021
[23] S. J. Clapcote and J. C. Roder, “Survey of Embryonic Stem Cell Line Source Strains in the Water Maze Reveals Superior Reversal Learning of 129S6/SvEvTac Mice,” Behavioural Brain Research, Vol. 152, 2004, pp. 35-48.
[24] E. H. Owen, S. F. Logue, D. L. Rasmussen and J. M. Wehner, “Assessment of Learning by the Morris Water Task and Fear Conditioning in Inbred Mouse Strains and F1 Hybrids: Implications of Genetic Background for Single Genemutations and Quantitative Trai Loci Analyses,” Neuroscience, Vol. 80, No. 4, 1997, pp. 1087-1099. doi:10.1016/S0306-4522(97)00165-6
[25] V. Voikar, S. Koks, E. Vasar and H. Rauvala, “Strain and Gender Differences in the Behavior of Mouse Lines Commonly Used in Transgenic Studies,” Physiology & Behavior, Vol. 72, No. 1-2, 2001, pp. 271-281. doi:10.1016/S0031-9384(00)00405-4
[26] M. Yoshida, K. Goto and S. Watanabe, “Task-Dependent Strain Difference of Spatial Learning in C57BL/6N and BALB/c Mice,” Physiology and Behavior, Vol. 73, No. 1-2, 2001, pp. 37-42. doi:10.1016/S0031-9384(01)00419-X
[27] K. Klapdor and F. J. Van Der Staay, “Repeated Acquisition of a Spatial Navigation Task in Mice: Effects of Spacing of Trials and of Unilateral Middle Cerebral Artery Occlusion,” Physiology & Behavior, Vol. 63, No. 5, 1998, pp. 903-909. doi:10.1016/S0031-9384(98)00003-1
[28] D. Van Dam, G. Lenders and P. P. De Deyn, “Effect of Morris Water Maze Diameter on Visual-Spatial Learning in Different Mouse Strains,” Neurobiology of Learning and Memory, Vol. 85, No. 2, 2006, pp. 164-172. doi:10.1016/j.nlm.2005.09.006
[29] R. D’Hooge and P. P. De Deyn, “Applications of the Morris Water Maze in the Study of Learning and Mem- ory,” Brain Research Reviews, Vol. 36, No. 1, 2001, pp. 60-90. doi:10.1016/S0165-0173(01)00067-4
[30] P. Chapillon and A. Debouzie, “BALB/c Mice Are Not So Bad in the Morris Water Maze,” Behavioral Brain Research, Vol. 117, No. 1-2, 2000, pp. 115-118. doi:10.1016/S0166-4328(00)00292-8
[31] Y. Ibarguen-Vargas, A. Surget, C. Touma, R. Palme and C. Belzung, “Multifaceted Strain-Specific Effects in a Mouse Model of Depression and of Antidepressant Re- versal,” Psychoneuroendocrinology, Vol. 33, No. 10, 2008, pp. 1357-1368. doi:10.1016/j.psyneuen.2008.07.010
[32] K. Yamada, Y. Santo-Yamada and K. Wada, “Stress- Induced Impairment of Inhibitory Avoidance Learning in Female Neuromedin B Receptor-Deficient Mice,” Physi- ology & Behavior, Vol. 78, No. 2, 2003, p. 303. doi:10.1016/S0031-9384(02)00979-4
[33] D. D. Francis, D. M. Zaharia, N. Shanks and H. Anisman, “Stress-Induced Disturbances in Morris Water-Maze Per- formance: Interstain Variability,” Physiology and Behavior, Vol. 58, No. 1, 1995, pp. 57-65. doi:10.1016/0031-9384(95)00009-8
[34] C. Pittenger and R. S. Duman, “Stress, Depression, and Neuroplasticity: A Convergence of Mechanisms,” Neu- ropsychopharmacology, Vol. 33, No. 1, 2007, pp. 88-109. doi:10.1038/sj.npp.1301574
[35] L. Santarelli, M. Saxe, C. Gross, A. Surget, F. Battaglia, S. Dulawa, et al., “Requirement of Hippocampal Neuro- genesis for the Behavioral Effects of Antidepressants,” Science, Vol. 301, No. 5634, 2003, pp. 805-809. doi:10.1126/science.1083328
[36] R. E. Brown and A. A. Wong, “The Influence of Visual Ability on Learning and Memory Performance in 13 Strains of Mice,” Learning & Memory, Vol. 14, 2007, pp. 134-144. doi:10.1101/lm.473907
[37] S. S. Moy, J. J. Nadler, N. B. Young, A. Perez, L. P. Hol- loway, R. P. Barbaro, et al., “Mouse Behavioral Tasks Relevant to Autism: Phenotypes of 10 Inbred Strains,” Behavioural Brain Research, Vol. 176, No. 1, 2007, pp. 4-20. doi:10.1016/j.bbr.2006.07.030
[38] M. Upchurch and J. M. Wehner, “Differences between Inbred Strains of Mice in Morris Water Maze Perform- ance,” Behavior Genetics, Vol. 18, No. 1, 1988, pp. 55- 68. doi:10.1007/BF01067075
[39] J. C. Crabbe, D. Wahlsten and B. C. Dudek, “Genetics of Mouse Behavior: Interactions with Laboratory Environ- ment,” Science, Vol. 284, No. 5420, 1999, pp. 1670-1672. doi:10.1126/science.284.5420.1670
[40] V. Carola, F. D’Olimpio, E. Brunamonti, F. Mangia, P. Renzi, “Evaluation of the Elevated Plus-Maze and Open- Field Tests for the Assessment of Anxiety-Related Be- haviour in Inbred Mice,” Behavioral Brain Research, Vol. 134, No. 1-2, 2002, pp. 49-57. doi:10.1016/S0166-4328(01)00452-1
[41] D. O. Hebb, “Drives and the C.N.S. (Conceptual Nervous System),” Psychological Review, Vol. 62, 1955, pp. 243- 254. doi:10.1037/h0041823
[42] A. Briones-Aranda, L. Rocha and O. Picazo, “Influence of Forced Swimming Stress on 5-HT1A Receptors and Serotonin Levels in Mouse Brain,” Progress in Neuro- Psychopharmacology & Biological Psychiatry, Vol. 29, No. 2, 2005, pp. 275-281. doi:10.1016/j.pnpbp.2004.11.011
[43] Y. Xu, B. Ku, L. Tie, H. Yao, W. Jiang, X. Ma, et al., “Curcumin Reverses the Effects of Chronic Stress on Behavior, the HPA Axis, BDNF Expression and Phosphorylation of CREB,” Brain Research, Vol. 1122, No. 1, 2006, pp. 56-64. doi:10.1016/j.brainres.2006.09.009
[44] A. Olariu, M. H. Tran, K. Yamada, M. Mizuno, V. Hefco and T. Nabeshima, “Memory Deficits and Increased Emotionality Induced by Beta-Amyloid (25-35) Are Cor- related with the Reduced Acetylcholine Release and Al- tered Phorbol Dibutyrate Binding in the Hippocampus,” Journal of Neural Transmission, Vol. 108, No. 8-9, 2001, pp. 1065-1079. doi:10.1007/s007020170025
[45] N. M. Conejo, M. Lopez, R. Cantora, H. Gonzalez-Pardo, L. Lopez, A. Begega, et al., “Effects of Pavlovian Fear Conditioning on Septohippocampal Metabolism in Rats,” Neuroscience Letters, Vol. 373, No. 2, 2005, pp. 94-98. doi:10.1016/j.neulet.2004.09.066
[46] M. Fujisaki, K. Hashimoto, M. Iyo and T. Chiba, “Role of the Amygdalo-Hippocampal Transition Area in the Fear Expression: Evaluation by Behavior and Immediate Early Gene Expression,” Neuroscience, Vol. 124, No. 1, 2004, pp. 247-260. doi:10.1016/j.neuroscience.2003.11.022
[47] C.-H. Lin, S.-H. Yeh, C.-H. Lin, K.-T. Lu, T.-H. Leu, W.-C. Chang, et al., “A role of PI-3 Kinase Signaling Pathway in Fear Conditioning and Synaptic Plasticity in the Amygdala,” Neuron, Vol. 31, No. 5, 2001, pp. 841- 851. doi:10.1016/S0896-6273(01)00433-0
[48] P. Barnes and M. Good, “Impaired Pavlovian Cued Fear Conditioning in Tg2576 Mice Expressing a Human Mu- tant Amyloid Precursor Protein Gene,” Behavioral Brain Research, Vol. 157, No. 1, 2005, pp. 107-117. doi:10.1016/j.bbr.2004.06.014

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.