Electrochemical Biosensors for Determination of Organophosphorus Compounds: Review


In last few decades there is exponential increase in use of organophosphorus (OP) compounds as pesticides and insecticides leading to adverse effect on human population and live stock. There is a great need to develop portable analytical tools that are amenable for remediation and bioremediation process monitoring, where rapid analysis of large number of samples is essential. Determination of various organophosphorus compounds has been achieved by integrating biocomponents with different transducers. The close integration of the biological events with the generation of a signal offers the potential for fabricating compact and easy-to-use analytical tools of high sensitivity and specificity. With the availability of new materials, associated with new sensing techniques has led to remarkable innovations in the design and construction of organophosphorus biosensors. The present review describes the specifications of most of the electrochemical Organophosphorus biosensors reported till date.

Share and Cite:

Gahlaut, A. , Gothwal, A. , Chhillar, A. and Hooda, V. (2012) Electrochemical Biosensors for Determination of Organophosphorus Compounds: Review. Open Journal of Applied Biosensor, 1, 1-8. doi: 10.4236/ojab.2012.11001.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] J. Jeyaratnam and M. Maroni, “Organophosphorous Compounds,” Toxicology, Vol. 91, No. 1, 1994, pp. 15-27. doi:10.1016/0300-483X(94)90236-4
[2] F. Worek, M. Koller, H. Thiermann and L. Szinicz, “Di-agnostic Aspects of Organophosphate Poisoning,” Toxicology, Vol. 214, No. 3, 2005, pp. 182-189. doi:10.1016/j.tox.2005.06.012
[3] B. K. Singh, “Organophosphorus-degrading Bacteria: Ecology and Industrial Applications,” Nature Reviews Mi-crobiology, Vol. 7, 2009, pp. 156-164.
[4] Environmental Protection Agency, “Malathion for Mosquito Control,” 2008. http://epa.gov/opp00001/health/mosquitoes/malathion4mosquitoes.html
[5] S. B. Bird, T. D. Sutherland, C. Gresham, J. Oakeshott, C. Scott and M. Eddleston, “OpdA, a Bacterial Organophosphorus Hydrolase, Prevents Lethality in Rats after Poisoning with Highly Toxic Organophosphorus Pesticides,” Toxicology, Vol. 247, No. 2-3, 2008, pp. 88-92. doi:10.1016/j.tox.2008.02.005
[6] W. J. Donarski, D. P. Dumas, D. P. Heitmeyer, V. E. Lewis and F. M. Raushel, “Structure-Activity Relationships in the Hydrolysis of Substrates by the Phosphotriesterase from Pseudomonas diminuta,” Biochemistry, Vol. 28, No. 11, 1989, pp. 4650-4655. doi:10.1021/bi00437a021
[7] S. Chapalamadugu and G. S. Chaudhry, “Microbiological and Biotechnological Aspects of Metabolism Carbamates and Organophosphates,” Critical Reviews in Biotechnology, Vol. 12, 1992, pp. 357-389. doi:10.3109/07388559209114232
[8] J. A. Compton, “Military Chemical and Biological Agents,” Telford Press, New Jersey, 1988.
[9] J. Sherma, “Pesticides,” Analytical Chemistry, Vol. 65, No. 12, 1993, pp. 40-54. doi:10.1021/ac00060a004
[10] S. Yao, A. Meyer and G. Henze, “Comparison of Amperometric and UV-Spectrophotometric Monitoring in HPLC Analysis of Pesticides,” Fresenius Journal of Analytical Chemistry, Vol. 339, No. 4, 1991, pp. 207-211. doi:10.1007/BF00325738
[11] P. Skladal, “Biosensors Based on Cholinesterase for Detection of Pesticides,” Food Technology and Biotechnology, Vol. 34, 1996, pp. 43-49.
[12] E. P. Meulenberg, W. H. Mulder and P. G. Stoks, “Immunoassays for Pesticides,” Environmental Science and Technology, Vol. 29, No. 3, 1995, pp. 553-561. doi:10.1021/es00003a001
[13] D. M. Munnecke, “Enzymatic Detoxification of Waste Organophosphate Pesticides,” Journal of Agricultural and Food Chemistry, Vol. 28, No. 1, 1980, pp. 105-111. doi:10.1021/jf60227a025
[14] D. R. Thévenot, K. Tóth, R. A. Durst and G. S. Wilson, “Electrochemical Biosensors: Recommended Definitions and Classification,” Pure and Applied Chemistry, Vol. 71, No. 12, 1999, pp. 2333-2348. doi:10.1351/pac199971122333
[15] A. Amine, H. Mohammadi, I. Bourais and G. Palleschi, “Enzyme Inhibition-Based Biosensor for Food Safety and Environmental Monitoring,” Biosensors and Bioelectronics, Vol. 21, No. 8, 2006, pp. 1405-1423. doi:10.1016/j.bios.2005.07.012
[16] W. N. Aldridge, “Some Properties of Specific Cholinesterase with Particular Reference to the Mechanism of Inhibition by Diethyl p-Nitrophenyl Thiophosphate (E605) and Analogies,” Biochemical Journal, Vol. 46, No. 4, 1950, pp. 451-460.
[17] M. Harlbert and R. Baldwin, “Electrocatalytic and Analytical Response of Cobalt-Phthalocyanine Containing Carbon Paste Electrodes towards Sulfhydryl Compounds,” Analytical Chemistry, Vol. 57, No. 3, 1985, pp. 591-595. doi:10.1021/ac00280a007
[18] E. N. Navera, K. Sode, E. Tamiya and I. Karube, “De-velopment of Acetylcholine Sensor Using Carbon Fiber (Amperometric Determination),” Biosensors and Bioelectronics, Vol. 6, No. 8, 1991, pp. 675-680. doi:10.1016/0956-5663(91)87021-3
[19] P. Skladal, “Determination of Organophosphate and Car-bamate Pesticides Using a Cobalt Phthalocyanine-Modified Carbon Paste Electrode and a Cholinesterase Enzyme Membrane,” Analytica Chimica Acta, Vol. 252, 1991, pp. 1-2. doi:10.1016/0003-2670(91)87190-I
[20] P. Skladal and M. Mascini, ‘‘Sensitive Detection of Pesticides Using Amperometric Sensors Based on Cobalt Phthalocyanine-Modified Composite Electrodes and Immobilized Cholinesterases,’’ Biosensors and Bioelectronics, Vol. 7, No. 5, 1992, pp. 335-343. doi:10.1016/0956-5663(92)85029-A
[21] D. Martorell, F. Céspedes, E. Martínez-Fàbregas and S. Alegret, “Amperometric Determination of Pesticides Using a Biosensor Based on a Polishable Graphite-Epoxy Biocomposite,” Analytica Chimica Acta, Vol. 290, No. 3, 1994, pp. 343-348. doi:10.1016/0003-2670(94)80121-5
[22] G. Evtugyn, H. Budnikov, G. Yu and E. Suntsov, “Amperometric Determination of Thiocholine Esters in the Presence of Butyrylcholinesterase,” Zhurnal Analiticheskoi Khimii, Vol. 51, No. 4, 1996, pp. 391-393.
[23] D. Martorell, F. Céspedes, E. Martínez-Fàbregas and S. Alegret, “Determination of Organophosphorus and Carbamate Pesticides Using a Biosensor Based on a Polishable, 7,7,8,8-Tetracyanoquino-Dimethane-Modified, Graphite-Epoxy Biocomposite,” Analytica Chimica Acta, Vol. 337, No. 3, 1997, pp. 305-313. doi:10.1016/S0003-2670(96)00384-4
[24] S. Hernandez, I. Palchetti and M. Mascini, “Determination of Anticholinesterase Activity for Pesticides Monitoring Using a Thiocholine Sensor,” International Journal of Environmental Analytical Chemistry, Vol. 78, No. 3-4, 2000, pp. 263-278. doi:10.1080/03067310008041346
[25] F. Ricci, F. Arduini, A. Amine, D. Moscone and G. Palleschi, “Characterisation of Prussian Blue Modified Screen-Printed Electrodes for Thiol Detection,” Journal of Electroanalytical Chemistry, Vol. 563, No. 2, 2004, pp. 229-237. doi:10.1016/j.jelechem.2003.09.016
[26] K. A. Joshi, J. Tang, R. Haddon, J. Wang, W. Chen and A. Mulchandani, “A Disposable Biosensor for Organophosphorus Nerve Agents Based on Carbon Nanotubes Modified Thick Film Strip Electrode,” Electroanalysis, Vol. 17, No. 1, 2005, pp. 54-58. doi:10.1002/elan.200403118
[27] M. Pohanka, P. Dobes, L. Dritinova and K. Kuca, “Nerve Agents Assay Using Cholinesterase Based Biosensor,” Electroanalysis, Vol. 21, No. 10, 2009, pp. 1177-1182. doi:10.1002/elan.200804528
[28] F. Arduini, A. Cassisi, A. Amine, F. Ricci, D. Moscone and G. Palleschi, “Electrocatalytic Oxidation of Thiocholine at Chemically Modified Cobalt Exacyanoferrate Screen-Printed Electrodes,” Journal of Electroanalytical Chemisrty, Vol. 626, No. 1-2, 2009, pp. 66-74. doi:10.1016/j.jelechem.2008.11.003
[29] N. Gan, X. Yang, D. Xie, Y. Wu and W. Wen, “A Dis-posable Organophosphorus Pesticides Enzyme Biosensor Based on Magnetic Nano-Particles Modified Screen Printed Carbon Electrode,” Sensors, Vol. 10, No. 1, 2010, pp. 665-638. doi:10.3390/s100100625
[30] A. C. Oliveira and L. H. Mascaro, “Evaluation of Acetylcholinesterase Biosensor Based on Carbon Nanotube Paste in the Determination of Chlorphenvinphos,” International Journal of Analytical Chemistry, Vol. 2011, 2011, pp. 1-6. doi:10.1155/2011/974216
[31] D. Du, J. Wang, L. Wang, D. Lu, J. N. Smith, C. Timchalk and Y. Lin, “Magnetic Electrochemical Sensing Platform for Biomonitoring of Exposure to Organophosphorus Pesticides and Nerve Agents Based on Simultaneous Measurement of Total Enzyme Amount and Enzyme Activity,” Analytical Chemistry, Vol. 83, No. 10, 2011, pp. 3770-3777. doi:10.1021/ac200217d
[32] N. Chauhan and C. S. Pundir, “An Amperometric Biosensor Based on Acetylcholinesterase Immobilized onto Iron Oxide Nanoparticles/Multi-Walled Carbon Nanotubes Modified Gold Electrode for Measurement of Organophosphorus Insecticides,” Analytica Chimica Acta, Vol. 701, No. 1, 2011, pp. 66-74. doi:10.1016/j.aca.2011.06.014
[33] T. Sikora, G. Istamboulie, E. Jubete, E. Ochoteco, J. L. Marty and T. Noguer, “Highly Sensitive Detection of Organophosphate Insecticides Using Biosensors Based on Genetically Engineered Acetylcholinesterase and Poly (3,4-Ethylenedioxythiophene),” Journal of Sensors, Vol. 2011, 2011, pp. 1-7. doi:10.1155/2011/102827
[34] Y. Wang, S. Zhang, D. Du, Y. Shao, Z. Li, J. Wang, M. H. Engelhard, J. Li and Y. Lin, “Self Assembly of Acetylcholinesterase on a Gold Nanoparticles-Grapheme Nanosheet Hybrid for Organophosphate Pesticide Detection Using Polyelectrolyte as a Linker,” Journal of Materials Chemistry, Vol. 21, No. 14, 2011, pp. 5319-5325. doi:10.1039/c0jm03441j
[35] A. C. Ion, I. Ion, A. Culetu, D. Gherase, C. A. Moldovan, R. Iosub and A. Dinescu, “Acetylcholinesterase Voltammetric Biosensors Based on Carbon Nanostructure-Chitosan Composite Material for Organophosphate Pesticides,” Materials Science and Engineering, Vol. 30, No. 6, 2010, pp. 817-821. doi:10.1016/j.msec.2010.03.017
[36] S. Viswanathan, H. Radecka and J. Radecki, “Electrochemical Biosensor for Pesticides Based on Acetylcholinesterase Immobilized on Polyaniline Deposited on Vertically Assembled Carbon Nanotubes Wrapped with ss-DNA,” Biosensors and Bioelectronics, Vol. 24, No. 9, 2009, pp. 2772-2777. doi:10.1016/j.bios.2009.01.044
[37] N. Chauhan, J. Narang and C. S. Pundir, “Immobilization of Rat Brain Acetylcholinesterase on ZnS and Poly (Indole-5-carboxylic acid) Modified Au Electrode for Detection of Organophosphorus Insecticides,” Biosensors and Bioelectronics, Vol. 29, No. 1, 2011, pp. 82-88. doi:10.1016/j.bios.2011.07.070
[38] G. Istamboulie, T. Sikora, E. Jubete, E. Ochoteco, J. L. Marty and T. Noguer, “Screen-Printed Poly(3,4-Ethylenedioxythiophene) (PEDOT): A New Electrochemical Mediator for Acetylcholinesterase-Based Biosensors,” Talanta, Vol. 82, No. 3, 2010, pp. 957-961. doi:10.1016/j.talanta.2010.05.070
[39] A. Hildebrandt, R. Bragos, S. Lacorte and J. L. Marty, “Performance of a Portable Biosensor for the Analysis of Organophosphorus and Carbamate Insecticides in Water and Food,” Sensors and Actuators B, Vol. 133, No. 1, 2010, pp. 195-201. doi:10.1016/j.snb.2008.02.017
[40] Y. Ivanov, I. Marinov, K. Gabrovska, N. Dimcheva and T. Godjevargova, “Amperometric Biosensor Based on a Site-Specific Immobilization of Acetylcholinesterase via Affinity Bonds on a Nanostructured Polymer Membrane With Intergrated Multiwall Carbon Nanotubes,” Journal of Molecular Catalysis B: Enzymatic, Vol. 63, No. 3-4, 2010, pp. 141-148. doi:10.1016/j.molcatb.2010.01.005
[41] R. Sinha, M. Ganesana, S. Andreescu and L. Stanciu, “AchE Biosensor Based on Zinc Oxide Sol-Gel for the Detection of Pesticides,” Analytica Chimica Acta, Vol. 661, No. 2, 2010, pp. 195-199. doi:10.1016/j.aca.2009.12.020
[42] F. Arduini, F. Ricci, C. S. Tuta, D. Moscone, A. Amine and G. Palleschi, “Detection of Carbamic and Organophosphorous Pesticides in Water samples Using a Cholinesterase Biosensor Based on Prussian Blue-Modified Screen-Printed Electrode,” Analytica Chimica Acta, Vol. 580, No. 2, 2006, pp. 155-162. doi:10.1016/j.aca.2006.07.052
[43] G. Valdes-Ramirez, M. Cortina, M. T. Ramirez-Silva and J. L. Marty, “Acetylcholinesterase-Based Biosensors for Quantification of Carbofuran, Methylparaoxon, and Dichlorvos in 5% Acetonitrile,” Analytical and Bioanalytical Chemistry, Vol. 392, No. 4, 2008, pp. 699-707. doi:10.1007/s00216-008-2290-7
[44] D. Du, X. Huang, J. Cai and A. Zhang, “Amperometric Detection of Triazophos Pesticide Using Acetylcholinesterase Biosensor Based on Multiwall Carbon Nanotube-Chitosan Matrix,” Sensors and Actuators B, Vol. 127, No. 2, 2007, pp. 531-535. doi:10.1016/j.snb.2007.05.006
[45] A. Vakurov, C. E. Simpson, C. L. Daly, T. D. Gibson and P. A. Millner, “Acetylcholinesterase-Based Biosensor Electrodes for Organophosphate Pesticide Detection. I. Modification of Carbon Surface for Immobilization of Acetylcholinesterase,” Biosensors and Bioelectronics, Vol. 20, No. 6, 2004, pp. 1118-1125. doi:10.1016/j.bios.2004.03.039
[46] G. Valdes-Ramirez, D. Fournier, M. T. Ramirez-Silva and J. L. Marty, “Sensitive Amperometric Biosensor for Dichlorovos Quantification: Application to Detection of Residues on Apple Skin,” Talanta, Vol. 74, No. 4, 2008, pp. 741-746. doi:10.1016/j.talanta.2007.07.004
[47] S. Sotiropoulou, D. Fournier and N. A. Chaniotakis, “Genetically Engineered Acetylcholinestrase-Based-Biosensor for Attomolar Detection of Dichlorvos,” Biosensors and Bioelectronics, Vol. 20, No. 11, 2005, pp. 2347-2352. doi:10.1016/j.bios.2004.08.026
[48] X. Sun and X. Wang, “Acetylcholinesterase Biosensor Based on Prussian Blue-Modified Electrode for Detecting Organophosphorous Pesticides,” Biosensors and Bioelectronics, Vol. 25, No. 1-2, 2010, pp. 2611-2614. doi:10.1016/j.bios.2010.04.028
[49] Y. Wei, Y. Li, Y. Qu, F. Xiao, G. Shi and L. Jin, “A Novel Biosensor Based on Photoelectro-Synergistic Catalysis for Flow-Injection Analysis System/Amperometric Detection of Organophosphorous Pesticides,” Analytica Chimica Acta, Vol. 643, No. 1-2, 2009, pp. 13-18. doi:10.1016/j.aca.2009.03.045
[50] D. Du, S. Chen, J. Cai and A. Zhang, “Immobilization of Acetylcholinesterase on Gold Nanoparticles Embedded in Sol-Gel Film for Amperometric Detection of Organophosphorous,” Biosensors and Bioelectronics, Vol. 23, No. 1, 2007, pp. 130-134. doi:10.1016/j.bios.2007.03.008
[51] D. Du, S. Chen, D. Song, H. Li and X. Chen, “Development of Acetylcholinesterase Biosensor Based on CdTe Quantum Dots/Gold Nanoparticles Modified Chitosan Microspheres Interface,” Biosensors and Bioelectronics, Vol. 24, No. 3, 2008, pp. 475-479. doi:10.1016/j.bios.2008.05.005
[52] A. Ishii, S. Takeda, S. Hattori, K. Sueoka and K. Mukasa, “Ultrasensitive Detection of Organophosphate Insecticides by Carbon Field-Effect Transistor,” Colloids and Surfaces A, Vol. 313-314, 2008, pp. 456-460. doi:10.1016/j.colsurfa.2007.05.071
[53] J. C. Vidal, S. Esteban, J. Gil and J. R. Castillo, “A Comparative Study of Immobilization Methods of a Tyrosinase Enzyme on Electrodes and their Application to the Detection of Dichlorvos Organophosphorus Insecti-cide,” Talanta, Vol. 68, No. 3, 2006, pp. 791-799. doi:10.1016/j.talanta.2005.06.038
[54] Y. D. de Albuquerque and L. F. Ferreira, “Amperometric Biosensing of Carbamate and Organophosphate Pesticides Utilizing Screen-Printed Tyrosinase-Modified Elec trodes,” Analytica Chimica Acta, Vol. 596, No. 2, 2007, pp. 210-221. doi:10.1016/j.aca.2007.06.013
[55] L. Campanella, D. Lelo, E. Martini and M. Tomassetti, “Organophosphorus and Carbamate Pesticide Analysis Using an Inhibition Tyrosinase Organic Phase Enzyme Sensor; Comparison by Butyrylcholinesterase + Choline Oxidase Opee and Application to Natural Waters,” Analytica Chimica Acta, Vol. 587, No. 1, 2007, pp. 22-32. doi:10.1016/j.aca.2007.01.023
[56] S. Sajjadi, H. Ghourchian and H. Tavakoli, “Choline Oxidase as a Selective Recognition Element for Determi-nation of Paraoxon,” Biosensors and Bioelectronics, Vol. 24, No. 8, 2009, pp. 2509-2514. doi:10.1016/j.bios.2009.01.008
[57] N. Sethunathan and T. Yoshida, “A Flavobacterium sp. That Degrades Diazinon and Parathion,” Canadian Journal of Microbiology, Vol. 19, 1973, pp. 873-875. doi:10.1139/m73-138
[58] D. M. Munnecke and D. P. Hsieh, “Pathways of Microbial Metabolism of Parathion,” Applied and Enviromental Microbiology, Vol. 31, 1976, pp. 63-69.
[59] J. Anzai, “Use of Biosensors for Detecting Organophosphorus Agents,” Yakugaku Zasshi, Vol. 126, No. 12, 2006, pp. 1301-1308. doi:10.1248/yakushi.126.1301
[60] C. Lei, M. Valenta, K. P. Sapiralli and E. J. Ackerman, “Biosensing Paraoxon in Simulated Environmental Samples by Immobilized Organophosphorus Hydrolase in Functionalized Mesoporous Silica,” Journal of Environmental Quality, Vol. 36, No. 1, 2007, pp. 233-238. doi:10.2134/jeq2006.0216
[61] A. Mulchandani, W. Chen, P. Mulchandani, J. Wang and K. R. Rogers, “Biosensors for Direct Determination of Organophosphate Pesticides,” Biosensors and Bioelectronics, Vol. 16, No. 4-5, 2001, pp. 225-230. doi:10.1016/S0956-5663(01)00126-9
[62] P. Mulchandani, W. Chen and A. Mulchandani, “Flow Injection Amperometric Enzyme Biosensor for Direct Determination of Organophosphate Nerve Agents,” Environmental Science and Technology, Vol. 35, No. 12, 2001, pp. 2562-2565. doi:10.1021/es001773q
[63] B. Prieto-Simon, M. Campàs, S. Andreescu and J. L. Marty, “Trends in Flow-Based Biosensing Systems for Pesticide Assessment,” Sensors, Vol. 6, No. 10, 2006, pp. 1161-1186. doi:10.3390/s6101161
[64] S. Rodriguez-Mozaz, M. P. Marco, M. J. Lopez de Alda and D. P. Barcelo, “Biosensors for Environmental Applications: Future Development Trends,” Pure and Applied Chemistry, Vol. 76, No. 4, 2004, pp. 723-752. doi:10.1351/pac200476040723
[65] J. Wang, R. Krause, K. Block, M. Musameh, A. Mulchandani and M. J. Schoning, “Flow Injection Amperometric Detection of OP Nerve Agents Based on an Organophosphorus-Hydrolase Biosensor Detector,” Biosensors and Bioelectronics, Vol. 18, No. 2-3, 2003, pp. 255- 260. doi:10.1016/S0956-5663(02)00178-1
[66] Y. Lei, P. Mulchandani, J. Wang, W. Chen and A. Mulchandani, “Highly Sensitive and Selective Amperometric Microbial Biosensor for Direct Determination of p-Nitro- phenyl-Substituted Organophosphate Nerve Agents,” Environmental Science and Technology, Vol. 39, 2005, pp. 8853-8857. doi:10.1021/es050720b
[67] V. A. Pedrosa, S. Paliwal, S. Balasubramanian, D. Nepal, V. Davis, J. Wild, E. Ramanculov and A. Simonian, “Enhanced Stability of Enzyme Organophosphate Hydrolase Interfaced on the Carbon Nanotubes,” Colloids and Surfaces B Biointerfaces, Vol. 77, No. 1, 2010, pp. 69-74. doi:10.1016/j.colsurfb.2010.01.009
[68] J. H. Lee, J. Y. Park, K. Min, H. J. Cha, S. S. Choi and Y. J. Yoo, “A Novel Organophosphorus Hydrolase-Based Biosensor Using Mesoporous Carbons and Carbon Black for The Detection Of Organophosphate Nerve Agents,” Biosensors and Bioelectronics, Vol. 25, No. 7, 2010, pp. 1566-1570. doi:10.1016/j.bios.2009.10.013
[69] R. P. Deo, J. Wang, I. Block, A. Mulchandani, K. A. Joshi, M. Trojanowicz, F. Scholz, W. Chen and Y. H. Lin, “Determination of Organophosphate Pesticides at a Carbon Nanotube/Organophosphorus Hydrolase Electrochemical Biosensor,” Analytica Chimica Acta, Vol. 530, No. 2, 2005, pp. 185-189. doi:10.1016/j.aca.2004.09.072
[70] T. Laothanachareon, V. Champreda, P. Sritongkham, M. Somasundrum and W. Surareungchai, “Cross-Linked Enzyme Crystals of Organophosphate Hydrolase for Electrochemical Detection of Organophoshorus Compounds,” World Journal of Microbiology and Biotechnology, Vol. 24, No. 12, 2008, pp. 3049-3055. doi:10.1007/s11274-008-9851-yOpen
[71] V. Sacks, I. Eshkenazi, T. Neufeld, C. Dosoretz and J. Rishpon, “Immobilized Parathion Hydrolase: An Amperometric Sensor for Parathion,” Analytical Chemistry, Vol. 72, No. 9, 2000, pp. 2055-2058. doi:10.1021/ac9911488
[72] D. Du, W. Chen, W. Zhang, D. Liu, H. Li and Y. Lin, “Covalent Coupling of Organophosphorus Hydrolase Loaded Quantum Dots to Carbon Nanotube. Au Nanocomposite for Enhanced Detection of Methyl Parathion,” Biosensors and Bioelectronics, Vol. 25, No. 6, 2010, pp. 1370-1375. doi:10.1016/j.bios.2009.10.032
[73] S. H. Chough, A. Mulchandani, P. mulchandani, W. Chen, J. Wang and K. R. Rogers, “Organophosphorus Hydrolase-Based Amperometric Sensor: Modulation of Sensitivity and Substrate Selectivity,” Electroanalysis, Vol. 14, No. 4, pp. 273-276. doi:10.1002/1521-4109(200202)14:4<273::AID-ELAN273>3.0.CO;2-5
[74] A. Merkoci, “Biosensing Using Nanomaterials,” John Wiley & Sons Ltd., Hoboken, 2009. doi:10.1002/9780470447734
[75] A. Periasamy, Y. Umasankar and S. M. Chen, “Nanomaterials—Acetylcholinesterase Enzyme Matrices for Organophosphorus Pesticides Electrochemical Biosensors: A Review,” Sensors, Vol. 9, 2009, pp. 4034-4055. doi:10.3390/s90604034
[76] M. Campàs, B. Prieto-Simón and J. L. Marty, “A Review of the Use of Genetically Engineered Enzymes in Electrochemical Biosensors,” Seminars in Cell & Developmental Biology, Vol. 20, No. 1, 2009, pp. 3-9. doi:10.1016/j.semcdb.2009.01.009

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.