[1]
|
Mortazavi, D., Kouzani, A.Z. and Soltanian-Zadeh, H. (2011) Segmentation of multiple sclerosis lesions in MR images: A review. Diagnostic Neuroradiology, 54, 299-320. doi:10.1007/s00234-011-0886-7
|
[2]
|
Wu, Y., Warfield, S.K., Tan, I.L., Wells, W.M. III, Meier, D.S., van Schijndel, R.A., Barkhof, F. and Guttmann, C.R. (2006) Automated segmentation of multiple sclerosis lesion subtypes with multichannel MRI. NeuroImage, 32 1205-1215. doi:10.1016/j.neuroimage.2006.04.211
|
[3]
|
Khayati, R., Vafadust, M., Towhidkhah, F. and Nabavi, S.M. (2007) A novel method for automatic determination of different stages of multiple sclerosis lesions in brain MR FLAIR images. Computerized Medical Imaging and Graphics, 32, 124-133. doi:10.1016/j.compmedimag.2007.10.003
|
[4]
|
Samarasekera, S., Udupa, J.K., Miki, Y., Wei, L. and Grossman, R.I. (1997) A new computer-assisted method for the Quantification of Enhancing Lesions in Multiple Sclerosis. Journal of Computer Assisted Tomography, 21, 145-151. doi:10.1097/00004728-199701000-00028
|
[5]
|
He, R. and Narayana, P.A. (2002) Automatic delineation of Gd enhancements on magnetic resonance images in multiple sclerosis. Medical Physics, 29, 1536-1546. doi:10.1118/1.1487422
|
[6]
|
Filippi, M., Rovaris, M., Campi, A., Pereira, C. and Comi, G. (1996) Semiautomated thresholding technique for measuring lesion volumes in multiple sclerosis: Effects of the change of the threshold on the computed lesion loads. Acta Neurologica Scandinavica, 93, 30-34. doi:10.1111/j.1600-0404.1996.tb00166.x
|
[7]
|
Rovaris, M., Filippi, M., Calori, G., et al. (1997) Intraobserver reproducibility in measuring new putative MR markers of demyelination and axonal loss in multiple sclerosis: A comparison with conventional T2-weighted images. Journal of Neurology, 244, 266-270. doi:10.1007/s004150050083
|
[8]
|
Filippi, M., Horsfield, M.A., Hajnal, J.V., et al. (1996) Quantitative assessment of magnetic resonance imaging lesion load in multiple sclerosis. Journal of Neurology, Neurosurgery & Psychiatry, 64, S88-S93. doi:10.1093/brain/119.4.1349
|
[9]
|
Khayati, R., Vafadust, M., Towhidkhah, F. and Nabavi, S.M. (2008) Fully automatic segmentation of multiple sclerosis lesions in brain MR FLAIR images using adaptive mixtures method and markov random field model. Computers in Biology and Medicine, 38, 379-390. doi:10.1016/j.compbiomed.2007.12.005
|
[10]
|
Polman, C.H., Reingold, S.C., Edan, G., Fillippi, M., Hartung, H.P. and Kappos, L. (2005) Diagnostic criteria for MS 2005 revisions to the MC Donald criteria. Annals of Neurology, 58, 840-846. doi:10.1002/ana.20703
|
[11]
|
Edelman, R.R., Hesselink, J.R., Zlatkin, M.B. and Crues, J.V. (2006) Clinical magnetic resonance imaging. 3rd Edition, Saunders, Philadelphia, 1571-1615.
|
[12]
|
Anbeek, P., Vincken, K.L., van Osch, M.J.P., Bisschops, R.H.C. and van der Grond, J. (2004) Probabilistic segmentation of white matter lesions in MR imaging. Neuro Image, 21, 1037-1044. doi:10.1016/j.neuroimage.2003.10.012
|
[13]
|
Khayati, R. (2006) Quantification of multiple sclerosis lesions based on fractal analysis. Ph.D. Thesis, Amirkabir University of Technology, Tehran.
|
[14]
|
Bijar, A., Khanloo, M.M., Benavent, A.P. and Khayati, R. (2011) Segmentation of MS lesions using entropy-based EM algorithm and Markov random fields. Journal of Biomedical Science and Engineering, 4, 552-561. doi:10.4236/jbise.2011.48071
|
[15]
|
Mandelbrot, B.B. and Freeman, W.H. (1983) The Fractal Geometry of Nature, San Francisco, 1982. No. of pages: 460. Earth Surface Processes and Landforms, 8, 406. doi:10.1002/esp.3290080415
|
[16]
|
Gonzalez, R.C., Woods, R.E. and Eddins, S.L. (2002) Digital Image Processing Using Matlab, Pearson Prentice Hall, Upper Saddle River. doi:10.1117/1.3115362
|
[17]
|
Zijdenbos, A.P., Dawant, B.M., Margolin, R.A. and Palmer, A.C. (1994) Morphometric analysis of white matter lesions in MR images: Method and validation. IEEE Transactions on Medical Imaging, 13, 716-724. doi:10.1109/42.363096
|
[18]
|
Stokking, R., Vincken, K.L. and Viergever, M.A. (2000) Automatic morphology based brain segmentation (MBRASE) from MRI-T1 data. NeuroImage, 12, 726-738. doi:10.1006/nimg.2000.0661
|
[19]
|
Bartko, J.J. (1991) Measurement and reliability: Statistical thinking considerations. Schizophrenia Bulletin, 17, 483-489. doi:10.1093/schbul/17.3.483
|
[20]
|
Johnston, B., Atkins, M.S., Mackiewich, B. and Anderson, M. (1996) Segmentation of multiple sclerosis lesions in intensity corrected multispectral MRI. IEEE Transactions on Medical Imaging, 15, 154-169. doi:10.1109/42.491417
|
[21]
|
Boudraa, A.O., Dehakb, S.M.R., Zhu, Y.M., Pachai, C., Bao, Y.G. and Grimaud, J. (2000) Automated segmentation of multiple sclerosis lesions in multispectral MR imaging using fuzzy clustering. Computers in Biology and Medicine, 30, 23-40. doi:10.1016/S0010-4825(99)00019-0
|
[22]
|
Leemput, K.V., Maes, F., Vandermeulen, D., Colchester, A. and Suetens, P. (2001) Automated segmentation of multiple sclerosis lesions by model outlier detection. IEEE Transactions on Medical Imaging, 20, 677-688. doi:10.1109/42.938237
|
[23]
|
Zijdenbos, A.P., Forghani, R. and Evans, A.C. (2002) Automatic pipeline analysis of 3-D MRI data for clinical trials: Application to multiple sclerosis, IEEE Transactions on Medical Imaging, 21, 1280-1291. doi:10.1109/TMI.2002.806283
|