Synthesis and Characterization of Eu+++ Doped Y2O3 (Red Phosphor) and Tb+++ Doped Y2O3 (Green Phosphor) by Hydrothermal Processes


Eu+++ and Tb+++ doped Y2O3 nanoparticles have been synthesized by hydrothermal process using yttrium oxo-isopropoxide Y5O(OPri)13 as precursor (OPri = isopropxy). X-ray diffraction (XRD), transmission electron microscopy (TEM), nanoparticle size analyzer and photoluminescence (PL) spectroscopy have been used to characterize these powders. The as synthesized powders gave very sharp peak in the X-ray diffraction suggesting crystalline particles with average particle size between 28 - 51 nm for Eu+++ doped Y2O3 nanoparticles and 43 - 51 nm for Tb+++ doped Y2O3 nanoparticles annealed at 300℃ for 3 h, 4 h and 5 h, which could be unique in comparison to other reports. Transmission electron micrograph investigation of the particles shows single dispersed particles along with agglomerates. The ratio of intensities of transitions in the europium and terbium emission spectrum have been used as structural probe to indicate the local environment around Eu+++ and Tb+++ in the Y2O3 particles.

Share and Cite:

Singh, R. , Gupta, K. , Pandey, A. and Pandey, A. (2012) Synthesis and Characterization of Eu+++ Doped Y2O3 (Red Phosphor) and Tb+++ Doped Y2O3 (Green Phosphor) by Hydrothermal Processes. World Journal of Nano Science and Engineering, 2, 13-18. doi: 10.4236/wjnse.2012.21003.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] V. A. Alexandria, “Research Opportunities for Materials with Ultrafine Microstructures,” National Academy Press, Washington DC, 1989.
[2] S. Shikao and W. Jiye, “Combustion Synthesis of Europium Activated Y2Al5O12 Phosphor Nanoparticles,” Journal of Alloys and Compounds, Vol. 327, No. 1-2, 2001, pp. 82-86. doi:10.1016/S0925-8388(01)01399-8
[3] K. E. Gonsalves, G. Carlson, J. Kumar, F. Aranda and M. J. Yacama, “Nanotechnology: Molecularly Designed Materials,” In: Gan-Moog Chow, K. E. Gonsalves (Eds.), Division of Polymeric Materials: Science and Engineering, Inc., 210th National Meeting of the American Chemical Society, Chiago, 20-24 August 1995.
[4] E. Giannelis, “Nanotechnology Molecularily Designed Materials,” In: G.-M.Chow and K. E. Gonsalves, Eds., American Chemical Society, Washington DC, 1995.
[5] A. D. Yoffe, “Low-Dimensional Systems: Quantum Size Effects and Electronic Properties of Semiconductor Microcrystallites (Zero-Dimensional Systems) and Some Quasi-Two-Dimensional Systems,” Advance in Physics, Vol. 42, No. 2, 1993, pp. 173-266. doi:10.1080/00018739300101484
[6] C. R. Ronda, “Recent Achievements in Research on Phosphors for Lamps and Displays,” Journal of Luminescence, Vol. 72-74, 1997, pp. 49-54. doi:10.1016/S0022-2313(96)00374-2
[7] E. Zych, “On the Reasons for Low Luminescence Efficiency in Combustion-Made Lu2O3:Tb,” Optical Materials, Vol. 16, No. 4, 2001, pp. 445-452. doi:10.1016/S0925-3467(01)00009-X
[8] C. J. Summers, IDW’96 Proceedings, Vol. 2, 18-20 November 1996, p. 13.
[9] A. Vecht, Extended Abstracts of Second International Conference on the Science and Technology of Display Phosphors, San Diego, 18-20 November 1996, p. 247.
[10] L. Sun, J. Yao, C. Liu, C. Liao and C. Yan, “Rare Earth Activated Nanosized Oxide Phosphors: Synthesis and Optical Properties,” Journal of Luminescence, Vol. 87-89, 2000, pp. 447-450. doi:10.1016/S0022-2313(99)00471-8
[11] Y. L. Soo, S. W. Huang, Y. H. Kao, V. Chhabra, B. Kulkami, J. V. D. Veliadis and R. N. Bhargava, “Controlled Agglomeration of Tb-Doped Y2O3 Nanocrystals Studied by X-Ray Absorption fine Structure, X-Ray Excited Luminescence, and Photoluminescence,” Applied Physics Letters, Vol. 75, No. 6, 1999, pp. 2464-2466. doi:10.1063/1.125049
[12] B. K. Gupta, D. Haranat, S. Saini, V. N. Singh and V. Shanker, “Synthesis and Characterization of Ultra-Fine Y2O3:Eu+++ Nanophosphors for Luminescent Security Ink Applications,” Nanotechnology, Vol. 21, No. 5, 2010, p. 055607. doi:10.1088/0957-4484/21/5/055607
[13] I. L. Medintz, H. Mattoussi and A. R. Clapp, “Potential Clinical Applications of Quantum Dots,” International Journal of Nanomedicine, Vol. 3, No. 2, 2008, pp. 151-167.
[14] T. Hirai, T. Orikoshi and I. Komasawa, “Preparation of Y2O3:Yb, Er Infrared-to-Visible Conversion Phosphor Fine Particles Using an Emulsion Liquid Membrane System,” Chemistry of Materials, Vol. 14, No. 8, 2002, pp. 3576-3583. doi:10.1021/cm0202207
[15] H. Eilers, “Synthesis and Characterization of Nanophase Yttria Co-Doped with Erbium and Ytterbium,” Material Letters, Vol. 60, No. 2, 2006, pp. 214-217. doi:10.1016/j.matlet.2005.08.021
[16] G. De, W. Qin, J. Zhang, Y. Wang, C. Cao and Y. Cui, “Upconversion Luminescence Properties of Y2O3:Yb3+, Er3+ Nanostructures,” Journal of Luminescence, Vol. 119-120, 2006, pp. 258.
[17] L. Yang, Y. Tang, X. Chen, Y. Li and X. Cao, “Synthesis of Eu3+ doped Y2O3 Nanotube Arrays through an Electric Field-Assisted Deposition Method,” Material Chemistry and Physics, Vol. 101, No. 1, 2007, pp. 195-198. doi:10.1016/j.matchemphys.2006.03.006
[18] G. S. Wu, Y. Lin, X. Y. Yuan, T. Xie, B. C. Cheng and L. D. Zhang, “A Novel Synthesis Route to Y2O3: Eu Nanotubes,” Nanotechnology, Vol. 15, No. 5, 2004, pp. 568-571. doi:10.1088/0957-4484/15/5/029
[19] Z. Xu, Z. Hong, Q. Zhao, L. Peng and P. Zhang, “Preparation and Luminescence Properties of Y2O3:Eu+++ Nanorods via Post Annealing Process,” Journal of Rare Earths, Vol. 24, No. 1, 2006, pp. 111-114. doi:10.1016/S1002-0721(07)60336-6
[20] V. V. Rajasekharan and D. A. Buttry, “Electrochemical Synthesis of Yttrium. Oxide Nanotubes,” Chemistry of Materials, Vol. 18, No. 19, 2006, pp. 4541-4543. doi:10.1021/cm061024t
[21] X. Li, Q. Li, J. Wang and J. Li, “Hydrothermal Synthesis of Er-Doped Yttria Nanorods with Enhanced red Emission via Upconversion,” Journal of Luminescence, Vol. 124, No. 2, 2007, pp. 351-356. doi:10.1016/j.jlumin.2006.04.007
[22] A. Pandey, A. Pandey, M. K. Roy and H. C. Verma, “Sol-Gel Synthesis and Characterization of Eu+++/Y2O3 Nanophosphore by an Alkoxide Precursor,” Material Chemistry and Physics, Vol. 96, No. 2-3, 2006, pp. 466-470. doi:10.1016/j.matchemphys.2005.07.037
[23] S. Kim, Y. T. Lim, E. G. Soltesz, A. M. De Grand, J. Lee, A Nakayama, J. A. Parker, T. Mihaljevic, R. G. Laurence, D. M. Dor, L. H. Cohn, M. G. Bawendi and J. V. Frangioni, “Near-Infrared Fluorescent Type II Quantum Dots for Sentinel Lymph Node Mapping,” Nature Biotechnology, Vol. 22, 2004, pp. 93-97. doi:10.1038/nbt920
[24] J. A. Nelson, E. L. Brant and M. J. Wagner, “Nanocrystalline Y2O3: Eu Phosphors Prepared by Alkalide Reduction,” Chemistry of Materials, Vol. 15, No. 3, 2003, pp 688-693. doi:10.1021/cm0207853
[25] F. Paraspour, D. F. Kelley and R. S. Williams, “Spectroscopy of Eu+++-Doped PtS2 Nanoclusters,” Journal of Physical Chemistry, Vol. 102, No. 41, 1998, pp. 7971-7977. doi:10.1021/jp982628q
[26] K. K?mpe, O. Lehmann and M. Haase, “Spectroscopic Distinction of Surface and Volume Ions in Cerium(III)- and Terbium(III)-Containing Core and Core/Shell Nanoparticles,” Chemistry of Materials, Vol. 18, No. 18, 2006, pp. 4442-4446. doi:10.1021/cm060857g

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.