Does Consciousness Exist Independently of Present Time and Present Time Independently of Consciousness?


While some are currently debating whether time may or may not be an illusion, others keep devoting their time to the science of consciousness. Time as such may be seen as a physical or a subjective variable, and the limitations in our capacity of perceiving and analyzing temporal order and change in physical events definitely constrain our understanding of consciousness which, in return, constrains our conceptual understanding of time. Temporal codes generated in the brain have been considered as the key to insight into neural function and, ultimately, as potential neural substrates of consciousness itself. On the basis of current evidence and opinion from neuroscience and philosophy, we consider the interrelation between consciousness and time in the light of Hegel and Heidegger’s concepts of Sein (Being) and Zeit (Time). We suggest that consciousness can be defined in terms of a succession of psychological moments where we realize that we exist in, and are part of, a present moment in time. This definition places all other perceptual or sensorial processes which may characterize phenomenal experience at a different level of analysis and centers the debate around consciousness on the fundamental identity link between awareness of the Ich (I) and awareness of what Heidegger termed Ursprüngliche Zeit (original time). We argue that human consciousness has evolved from the ability to be aware of, to remember, and to predict temporal order and change in nature, and that the limits of this capacity are determined by limits in the functional plasticity of resonant brain mechanisms. Although the conscious state of the Self is the ultimate expression of this evolution, it is devoid of any adaptive function as such.

Share and Cite:

Dresp-Langley, B. & Durup, J. (2012). Does Consciousness Exist Independently of Present Time and Present Time Independently of Consciousness?. Open Journal of Philosophy, 2, 45-49. doi: 10.4236/ojpp.2012.21007.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Amiez, C., & Petrides, M. (2007). Selective involvment of the mid-dorsolateral prefrontal cortex in the coding of the serial order of visual stimuli in working memory. Proceedings of the National Academy of Sciences of the USA, 104, 13786-13791. doi:10.1073/pnas.0706220104
[2] Axmacher, N., Mormann, F., Fernández, G., Elger, C. E., & Fell, J. (2006). Memory formation by neural synchronization. Brain Research Reviews, 52, 470-482. doi:10.1016/j.brainresrev.2006.01.007
[3] Axmacher, N., Henscher, M. M., Jensen, O., Weinreich, I., Elger, C. E., & Fell, J. (2010). Cross-frequency coupling supports multi-item working memory in the human hippocampus, Proceedings of the National Academy of Sciences of the USA, 107, 3228-3233. doi:10.1073/pnas.0911531107
[4] Ba?ar, E. (2006). The theory of the whole-brain-work. International Journal of Psychophysiolog, 60, 133-138. doi:10.1016/j.ijpsycho.2005.12.007
[5] Buhusi, C. V., & Meck, W. H. (2009). Relative time sharing: New findings and an extension of the resource allocation model of temporal processing. Philosophical Transactions of the Royal Society London B, 364, 1875-1885. doi:10.1098/rstb.2009.0022
[6] Bulf, H., Johnson, S. P., & Valenza, E. (2011). Visual statistical learning in the newborn infant. Cognition, 121, 127-132. doi:10.1016/j.cognition.2011.06.010
[7] Buzsáki, G. (2007). The structure of consciousness. Nature, 446, 267. doi:10.1038/446267a
[8] Callender, C. (2010). Is time an illusion? Scientific American, 295, 58-65. doi:10.1038/scientificamerican0610-58
[9] Canolty, R. T. et al. (2006). High gamma power is phase-locked to theta oscillations in the human neocortex. Science, 313, 1626-1628. doi:10.1126/science.1128115
[10] Canolty, R. T., & Knight, R. T. (2010). The functional role of cross- frequency coupling. Trends in Cognitive Sciences, 14, 506-515. doi:10.1016/j.tics.2010.09.001
[11] Carroll, S. (2010). From eternity to Here: The quest for the ultimate theory of time. New York: Dutton/Penguin Group.
[12] Cowan, N. (2001). The magic number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioural and Brain Science, 24, 87-114. doi:10.1017/S0140525X01003922
[13] Crick, F., & Koch, C. (2003). A framework for consciousness. Nature Neuroscience, 6, 119-126. doi:10.1038/nn0203-119
[14] Damasio, A. R. (2002). Remembering when. Scientific American: Special Edition: A Matter of Time, 287, 3.
[15] Del Cul, A., Dehaene, S., Reyes, P., Bravo, E., & Slachevsky, A. (2009). Causal role of prefrontal cortex in the threshold for access to consciousness. Brain, 132, 2531-2540. doi:10.1093/brain/awp111
[16] Drecke, L. (1990). Electrophysiological correlates of movement initiation. Revue Neurologique (Paris), 146, 612-619.
[17] Dresp-Langley, B., & Durup, J. (2009). A plastic temporal brain code for conscious state generation. Neural Plasticity, 2009, 482696. doi:10.1155/2009/482696
[18] Droege, P. (2009). Now or never: How consciousness represents time. Consciousness and Cognition, 18, 78-90. doi:10.1016/j.concog.2008.10.006
[19] Edelman, G. M. (1993). Neural Darwinism: selection and reentrant signaling in higher brain function. Neuron, 10, 115-125. doi:10.1016/0896-6273(93)90304-A
[20] Engel, A. K., & Singer, W. (2001). Temporal binding and the neural correlates of sensory awareness. Trends in Cognitive Sciences, 5, 16-25. doi:10.1016/S1364-6613(00)01568-0
[21] Fingelkurts, A, Fingelkurts, A. A., & Neves, C. F. H. (2010). Natural world physical, brain operational, and mind phenomenal space-time. Physics of Life Reviews, 7, 195-249. doi:10.1016/j.plrev.2010.04.001
[22] Forget, J., Bulatti, M., & Dehaene, S. (2010). Temporal integration in visual word recognition. Journal of Cognitive Neuroscience, 22, 1054-1068. doi:10.1162/jocn.2009.21300
[23] Grossberg, S. (1999). The links between brain learning, attention, and consciousness. Consciousness and Cognition, 8, 1-44. doi:10.1006/ccog.1998.0372
[24] Grush, R. (2005). Internal models and the construction of time: Generalizing from state estimation to trajectory estimation to address temporal features of perception, including temporal illusions. Journal of Neural Engineering, 2, 209-218. doi:10.1088/1741-2560/2/3/S05
[25] Haggard P., Clarke S. (2003). Intentional action: Conscious experience and neural prediction. Consciousness and Cognition, 12, 695-707. doi:10.1016/S1053-8100(03)00052-7
[26] Hegel, G. W. F. (1807). System der Wissenschaft. Erster Teil: Die Ph?nomenologie des Geistes, Josef Anton Goebhardt Verlag, Bamberg & Würzburg.
[27] Heidegger, M. (1927). Sein und Zeit, Max Niemeyer Verlag, Tübingen.
[28] Helekar, S. A. (1999). On the possibility of universal neural coding of subjective experience. Consciousness & Cognition, 8, 423-446. doi:10.1006/ccog.1998.0377
[29] Herrmann C. S., Munk M. H., & Engel A. K. (2004). Cognitive functions of gamma-band activity: memory match and utilisation. Trends in Cognitive Sciences, 8, 347-355. doi:10.1016/j.tics.2004.06.006
[30] Herzog, M. H., Esfeld, M., & Gerstner, W. (2007). Consciousness and the smalll network argument. Neural Networks, 20, 1054-1056. doi:10.1016/j.neunet.2007.09.001
[31] Holz E. M., Glennon M., Prendergast K., & Sauseng P. (2010). Theta-gamma phase synchronization during memory matching in visual working memory. Neuroimage, 52, 326-336. doi:10.1016/j.neuroimage.2010.04.003
[32] Jacobs, J., Kahana, M. J., Ekstrom, A. D., & Fried, I. (2007). Brain oscillations control timing of single-neuron activity. Journal of Neuroscience, 27, 3839-3844. doi:10.1523/JNEUROSCI.4636-06.2007
[33] Jaynes, J. (1990). The origin of consciousness in the breakdown of the bicameral mind. Boston, MA: Houghton-Mifflin.
[34] John, E. R. (2002). The neurophysics of consciousness. Brain Research Reviews, 39, 1-28. doi:10.1016/S0165-0173(02)00142-X
[35] Johnson, H. A., & Buonomano, D. V. (2010). Neural dynamics of in vitro cortical networks reflects experienced temporal patterns. Nature Neuroscience, 13, 917-919. doi:10.1038/nn.2579
[36] Jonides, J., Lewis, R. L., Nee, D. E., Lustig, C. A., Berman, M. G. & Moore, K. S. (2008). The mind and brain of short-term memory. Annual Review of Psychology, 59, 193-224. doi:10.1146/annurev.psych.59.103006.093615
[37] Kierkegaard, S. (1949, 1949). Traité du desespoir. Paris: Gallimard.
[38] Kornhuber, H., & Deecke, L. (1965). Hirnpotential?nderungen bei Willkurbewegungen und passiven Bewegungen des Menschen: Bereitschaftspotential und reafferente Potentiale. Pfluegers Archiv für die Gesamte Physiologie der Menschen und Tiere, 284, 1-17. doi:10.1007/BF00412364
[39] Lamme, V. A. F. (2006). Towards a true neural stance in consciousness. Trends in Cognitive Sciences, 10, 494-501. doi:10.1016/j.tics.2006.09.001
[40] Le Poidevin, R., & MacBeath, M. (1993). The philosophy of time. Oxford: Oxford University Press.
[41] Libet, B. (2004). Mind time. Cambridge: Harvard University Press.
[42] Lisman, J. (2010). Working memory: The importance of theta and gamma oscillations. Current Biology, 20, 490-492. doi:10.1016/j.cub.2010.04.011
[43] Lloyd, D. (2004). Radiant cool. Cambridge, MA: MIT Press.
[44] Luo, H., & Poeppel, D. (2007). Phase patterns of neuronal responses reliably discriminate speech in human auditory cortex. Neuron, 54, 1001-1010. doi:10.1016/j.neuron.2007.06.004
[45] Maia, T. V., & Cleeremans, A. (2005). Consciousness: Converging insights from connectivist modelling and neuroscience. Trends in Cognitive Sciences, 9, 397-404. doi:10.1016/j.tics.2005.06.016
[46] Mathewson, K. E. et al. (2009). To see or not to see: Prestimulus alphaphase predicts visual awareness. Journal of Neuroscience, 29, 2725-2732. doi:10.1523/JNEUROSCI.3963-08.2009
[47] Melloni, L., Molina, C., Pena, M., Torres, D., Singer, W., & Rodriguez, E. (2007). Synchronization of neural activity across cortical areas correlates with conscious perception. Journal of Neuroscience, 27, 2858-2865. doi:10.1523/JNEUROSCI.4623-06.2007
[48] Natsoulas, T. (1999). A rediscovery of presence. Journal of Mind & Behavior, 20, 17-42.
[49] Nyberg, L., Kim, A. S. N., Habib, R., Levine, B., & Tulving, E. (2010). Consciousness of subjective time in the brain. Proceedings of the National Academy of Sciences of the USA, 107, 22356-22359. doi:10.1073/pnas.1016823108
[50] Palva, J. M., Palva, S., & Kaila, K. (2005). Phase synchrony among oscillations in the human cortex. Journal of Neuroscience, 25, 3962-3972. doi:10.1523/JNEUROSCI.4250-04.2005
[51] Palva, S., & Palva, J. M. (2007). New vistas for frequency band oscillations. Trends in Neurosciences, 30, 150-158. doi:10.1016/j.tins.2007.02.001
[52] Piaget, J. (1967). La construction du réel chez l’enfant. Neuch?tel: Delachaux et Niestlé.
[53] Rosenthal, D. M. (2008). Consciousness and its function. Neuropsychologia, 46, 829-840. doi:10.1016/j.neuropsychologia.2007.11.012
[54] Sarrazin, J. C., Giraudo, M. D., & Pittenger, J. B. (2007). Tau and Kappa effects in physical space: the case of audition. Psychological Research, 71, 201-218. doi:10.1007/s00426-005-0019-1
[55] Singer, W. (2009). Distributed processing and temporal codes in neuronal networks. Cognitive Neurodynamics, 3, 189-196. doi:10.1007/s11571-009-9087-z
[56] Smythies, J. (2003). Space, time, and consciousness. Journal of Consciousness Studies, 10, 47-56.
[57] Stein, A. von, Chiang, C., & K?nig, P. (2000). Top-down processing mediated by inter-areal synchrony. Proceedings of the National Academy of Sciences of the USA, 97, 14748-14753.
[58] Taylor, J. G. (1998). Constructing the relational mind. Psyche, 4, 10. doi:10.1073/pnas.97.26.14748

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.