Steady-state kinetics of Roystonea regia palm tree peroxidase


Royal palm tree peroxidase (RPTP) has been isolated to homogeneity from leaves of Roystonea regia palm trees. The enzyme purification steps included homogenization, (NH4)SO4 precipitation, extraction of palm leaf colored compounds and consecutive chromatography on Phenyl-Sepharose, TSK-Gel DEAE-5PW and Superdex-200. The novel peroxidase was characterized as having a molecular weight of 48.2 ± 3.0 kDa and an isoelectric point pI 5.4 ± 0.1. The enzyme forms dimers in solution with approximate molecular weight of 92 ± 2 kDa. Here we investigated the steady-state kinetic mechanism of the H2O2-supported oxidation of different organic substrates by RPTP. The results of the analysis of the initial rates vs. H2O2 and reducing substrate concentrations were seen to be consistent with a substrate-inhibited Ping-Pong Bi-Bi reaction mechanism. The phenomenological approach used expresses the peroxidase Ping-Pong mechanism in the form of the Michaelis-Menten equation and affords an interpretation of the effects in terms of the kinetic parameters KmH2O2, KmAH2, kcat, KSIH2O2, KSIAH2 and of the microscopic rate constants k1 and k3 of the shared three-step peroxidase catalytic cycle. Furthermore, the concentration and time-dependences and the mechanism of the suicide inactivation of RPTP by hydrogen peroxide were studied kinetically with guaiacol as co-substrate. The turnover number (r) of H2O2 required to complete the inactivation of the enzyme was 2154 ± 100 and the apparent rate constants of catalysis 185 s–1 and 18 s–1.

Share and Cite:

Zamorano, L. , Cuadrado, N. , Galende, P. , Roig, M. and Shnyrov, V. (2012) Steady-state kinetics of Roystonea regia palm tree peroxidase. Journal of Biophysical Chemistry, 3, 16-28. doi: 10.4236/jbpc.2012.31002.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Penel, C., Gaspar, T. and Greppin, H. (1992) Plant peroxidases 1980-90. Topics and detailed literature on molecular, biochemical, and physiological aspects. University of Geneva, Geneva.
[2] Dordick, J.S., Marletta, M.A. and Klibanov, A.M. (1987) Polymerization of phenols catalyzed by peroxidase in nonaqueous media. Biotechnology and Bioengineering, 30, 31-36. doi:10.1002/bit.260300106
[3] Akkara, J.A., Senecal, K.J. and Kaplan, D.L. (1991) Synthesis and characterization of polymers produced by horseradish peroxidase in dioxane. Journal of Polymer Science Part A: Polymer Chemistry, 29, 1561-1574. doi:10.1002/pola.1991.080291105
[4] Thompson, R.Q. (1987) Peroxidase-based colorimetric determination of L-ascorbic acid. Analytical Chemistry, 59, 1119-1121. doi:10.1021/ac00135a011
[5] Weng, Z., Hendrickx, M., Maesmans, G. and Tobback, P. (1991) Thermostability of soluble and immobilized horseradish peroxidase. Journal of Food Science, 56, 574-578. doi:10.1111/j.1365-2621.1991.tb05328.x
[6] Arseguel, D. and Baboulène, M.J. (1994) Removal of Phenol from coupling of talc and peroxidase—Application for depollution of waste-water containing phenolic-compounds. Journal of Chemical Technology and Bio- technology, 61, 331-335. doi:10.1002/jctb.280610408
[7] Adler, P.R., Arora, R., El Ghaouth, A., Glenn, D.M. and Solar, J.M. (1994) Bioremediation of phenolic compounds from water with plant root surface peroxidases. Journal of Environmental Quality, 23, 1113-1117. doi:10.2134/jeq1994.00472425002300050038x
[8] Zamorano, L.S., Roig, M.G., Villar, E. and Shnyrov, V.L. (2007) The versatile peroxidases. Current Topics of Biochemical Research, 9, 1-26.
[9] Dunford, H.B. (1999) Heme peroxidases. John Wiley & Sons, Inc., New York.
[10] Schuller, D.J., Ban, N., van Huystee, R.B., McPherson, A. and Poulos, T.L. (1996) The crystal structure of peanut peroxidase. Structure, 4, 311-321. doi:10.1016/S0969-2126(96)00035-4
[11] Rasmussen, C.B., Hiner, A.N., Smith, A.T. and Welinder, K.G. (1998) Effect of calcium, other ions, and pH on the reactions of barley peroxidase with hydrogen peroxide and fluoride. Control of activity through conformational change. The Journal of Biological Chemistry, 273, 2232-2240. doi:10.1074/jbc.273.4.2232
[12] Kvaratskhelia, M., Winkel, C. and Thorneley, R.N. (1997) Purification and characterization of a novel class III peroxidase isoenzyme from tea leaves. Plant Physiology, 114, 1237-1245. doi:10.1104/pp.114.4.1237
[13] Ostergaard, L., Abelskov, A.K., Mattsson, O. and Welinder, K.G. (1996) Structure and organ specificity of an anionic peroxidase from Arabidopsis thaliana cell suspension culture. FEBS Letters, 398, 243-247. doi:10.1016/S0014-5793(96)01244-6
[14] Rodríguez, A., Pina, D.G., Yélamos, B., Castillo León, J.J., Zhadan, G.G., Villar, E., Gavilanes, F., Roig, M.G., Sakharov, I.Y. and Shnyrov, V.L. (2002) Thermal stability of peroxidase from the african oil palm tree Elaeis guineensis. European Journal of Biochemistry, 269, 2584-2590. doi:10.1046/j.1432-1033.2002.02930.x
[15] Watanabe, L., Nascimiento, A.S., Zamorano, L.S., Shnyrov, V.L. and Polikarpov, I. (2007) Purification, crystallization and preliminary X-ray diffraction analysis of royal palm tree (Roystonea regia) peroxidase. Acta Crystallographica Section F, 63, 780-783.
[16] Zamorano, L.S., Pina, D.G., Arellano, J.B., Bursakov, S. A., Zhadan, A.P., Calvete, J.J., Sanz, L., Nielsen, P.R., Villar, E., Gavel, O., Roig, M.G., Watanabe, L., Polikarpov, I. and Shnyrov, V.L. (2008) Thermodynamic characterization of the palm tree Roystonea regia peroxidase stability. Biochimie, 90, 1737-1749. doi:10.1016/j.biochi.2008.07.010
[17] Zamorano, L.S., Vilarmau, S.B., Arellano, J.B., Zhandan, G.G., Hidalgo-Cuadrado, N., Bursakov, S.A., Roig, M.G. and Shnyrov, V.L. (2009) Thermal stability of peroxidase from Chamaerops excelsa palm tree at pH 3. International Journal of Biological Macromolecules, 44, 326-332. doi:10.1016/j.ijbiomac.2009.01.004
[18] Watanabe, L., Ribeiro de Moura, P., Bleicher, L., Nascimiento, A.S., Zamorano, L.S., Calvete, J.J., Sanz, L., Pérez, A., Bursakov, S., Roig, M.G., Shnyrov, V.L. and Polikarpov, I. (2009) Crystal structure and statistical coupling analysis of highly glycosylated peroxidase from royal palm tree (Roystonea regia). Journal of Structural Biology, 169, 226-242. doi:10.1016/j.jsb.2009.10.009
[19] Poulos, T.L. and Kraut, J. (1980) The stereochemistry of peroxidase catalysis. The Journal of Biological Chemistry, 255, 8199-8205.
[20] Rasmussen, C.B., Dunford, H.B. and Welinder, K.G. (1995) Rate enhancement of compound I formation of barley peroxidase by ferulic acid, caffeine acid and coniferyl alcohol. Biochemistry, 34, 4022-4029. doi:10.1021/bi00012a021
[21] Rodriguez-López, J.N., Lowe, D.L., Hernández-Ruiz, J., Hiner, A.N.P., Garcia-Cánovas, F. and Thorneley, R.N.F. (2001) Mechanism of reaction of hydrogen peroxide with horseradish peroxidase: Identification of intermediates in the catalytic cycle. Journal of the American Chemical Society, 123, 11838-11847. doi:10.1021/ja011853+
[22] Dunford, H.B. and Stillman, J.S. (1976) On the function and mechanism of action of peroxidases. Coordination Chemitry Reviews, 19, 187-251. doi:10.1016/S0010-8545(00)80316-1
[23] Wang, W., No?l, S., Desmadril, M., Guéguen, J. and Mi- chons, T. (1999) Kinetic evidence for the formation of Michaelis-Menten like complex between horseradish peroxidase Compound II and di-(N-acetyl-L-tyrosine). Biochemical Journal, 340, 329-336. doi:10.1042/0264-6021:3400329
[24] Childs, R.E. and Bardsley, W.G. (1975) The steady-state kinetics of peroxidase with 2,2’-azino-di-(3-ethyl-benthi- azoline-6-sulphonic acid) as chromogen. Biochemical Journal, 145, 93-103.
[25] Wolters, G., Kuijpers, L., Kacaki, J. and Schuurs, A. (1976) Solid-phase enzyme-immunoassay for detection of hepatitis B surface antigen. Journal of Clinical Pathology, 29, 873-879. doi:10.1136/jcp.29.10.873
[26] Bovaird, J.H., Ngo, T.T. and Lenhoff, H.M. (1982) Optimizing the o-phenylendiamine assay for horseradish peroxidase: Effects of phosphate and pH, substrate and enzyme concentrations, and stopping reagents. Clinical Chemistry, 28, 2423-2426.
[27] Tijssen, P. (1985) Practice and theory of enzyme immunoassays. Elsevier Science Ltd., New York.
[28] Jiao, Q.G., Onwuegbuzie, A. and Lichtenstein, A. (1996) Library anxiety: Characteristics of “At Risk” college students. Library and Information Science Research, 18, 150-163.
[29] Cleland, W.W. (1970) The enzymes. Academic Press, New York.
[30] Sakharov, I.Y., Vesga, B.M.K. and Sakharova, I.V. (2002) Substrate specificity of African oil palm tree peroxidase. Biochemistry (Moscow), 67, 1043-1047. doi:10.1023/A:1020534321683
[31] Sakharov, I.Y. (2004) Palm tree peroxidases. Biochemistry (Moscow), 69, 823-829. doi:10.1023/B:BIRY.0000040213.91951.bc
[32] Arnao, M.B., Acosta, M., del Río, J.A. and GarcíaCánovas, F. (1990) Inactivation of peroxidase by hydrogen peroxide and its protection by reductant agent. Biochimica et Biophysica Acta, 1038, 85-89. doi:10.1016/0167-4838(90)90014-7
[33] Hiner, A.N.P., Hernández-Ruiz, J., García-Cánovas, F., Smith, A.T., Arnao, M.B. and Acosta, M. (1995) A comparative study of inactivation of wild-type, recombinant and two mutant horseradish peroxidase isoenzymes C by hydrogen peroxide and m-chloroperoxybenzoic acid. European Journal of Biochemistry, 234, 506-512. doi:10.1111/j.1432-1033.1995.506_b.x
[34] Puiu, M., R?ducan, A., Babaligea, I. and Oancea, D. (2008) Oxidase-peroxidase reaction: Kinetics of peroxidase-catalysed oxidation of 2-aminophenol. Bioprocess and Biosystems Engineering, 31, 579-586. doi:10.1007/s00449-008-0206-8
[35] Aitken, S.M., Ouellet, M., Percival, M.D. and English, A.M. (2003) Mechanism of horseradish peroxidase inactivation by benzhydrazide: A critical evaluation of arylhydrazides as peroxidase inhibitors. Biochemical Journal, 375, 613-621. doi:10.1042/BJ20021936
[36] Nakaijima, R. and Yamazaki, I. (1987) The mechanism of oxyperoxidase formation from ferryl peroxidase and hydrogen peroxide. The Journal of Biological Chemistry, 262, 2576-2581.
[37] Adediran, S.S. and Lambeir, A.M. (1989) Kinetics of the reaction of compound II of horseradish peroxidase with hydrogen peroxidase to form Compound III. European Journal of Biochemistry, 186, 571-576. doi:10.1111/j.1432-1033.1989.tb15246.x
[38] Hiner, A.N.P., Rodriguez-López, J.N., Arnao, M.B., Raven, E.L., García-Canovas, F. and Acosta, M. (2000) Kinetic study of the inactivation of ascorbate peroxidase by hydrogen peroxide. Biochemical Journal, 348, 321-328. doi:10.1042/0264-6021:3480321
[39] Nazari, K., Mahmoudi, A., Khosraneh, M., Haghighian, Z. and Moosavi-Movahedi, A.A. (2009) Kinetic analysis for suicide-substrate inactivation of microperoxidase-11: A modified model for bisubstrate enzymes in the presence of reversible inhibitors. Journal of Molecular Catalysis B: Enzymatic, 56, 61-69. doi:10.1016/j.molcatb.2008.04.008
[40] Hidalgo Cuadrado, N., Zhadan, G.G., Roig, M.G. and Shnyrov, V.L. (2011) Suicide inactivation of peroxidase from Chamaerops excelsa palm tree leaves. International Journal of Biological Macromolecules, 49, 1078-1082. doi:10.1016/j.ijbiomac.2011.09.001
[41] Hernández-Ruiz, J., Arnao, M.B., Hiner, A.N.P., GarcíaCanovas, F. and Acosta, M. (2001) Catalase-like activity of horseradish peroxidase: Relationship to enzyme inactivation by H2O2. Biochemical Journal, 354, 107-114. doi:10.1042/0264-6021:3540107
[42] Fairbanks, G., Steck, T.L. and Wallach, D.F.H. (1971) Disposition of the major proteins in the isolated erythrocyte membrane. Proteolytic dissection. Biochemistry, 10, 2606-2617. doi:10.1021/bi00789a030
[43] Zamorano, L.S. (2009) Physico-chemical characterization of Royal palm tree (Roystonea regia L.) peroxidase, a high stable enzyme. Ph.D. Thesis, School of Chemistry, University of Salamanca, 174-190.
[44] Morales, M. and Ros-Barceló, A. (1997) A basic peroxidase isoenzyme from vacuoles and cell walls of Vitis vinifera. Phytochemistry, 45, 229-232. doi:10.1016/S0031-9422(96)00825-4
[45] Cleland, W.W. (1963) The kinetics of enzyme-catalyzed reactions with two or more substrates or products. I. Nomenclature and rate equations. Biochimica et Biophysica Acta, 67, 104-137. doi:10.1016/0926-6569(63)90211-6
[46] Cleland, W.W. (1963) The kinetics of enzyme-catalyzed reactions with two or more substrates or products. II. Inhibition: Nomenclature and theory. Biochimica et Biophysica Acta, 67, 173-187. doi:10.1016/0926-6569(63)90226-8
[47] Cleland, W.W. (1979) Statistical analysis of enzyme ki- netic data. Methods in Enzymology, 63, 103-138. doi:10.1016/0076-6879(79)63008-2
[48] Hidalgo Cuadrado, N., Arellano, J.B., Calvete, J.J., Sanz, L., Zhadan, G.G., Polikarpov, I., Bursakov, S., Roig, M.G. and Shnyrov, V.L. (2011) Substrate specificity of the Chamaerops excelsa palm tree peroxidase. A steady-state kinetic study. Journal of Molecular Catalysis B: Enzymatic, 74, 103-108. doi:10.1016/j.molcatb.2011.09.005
[49] Gazaryan, I.G., Lagimini, L.M., Ashby, G.A. and Thorneley, R.N.F. (1996) Mechanism of indole-3-acetic acid oxidation by plant peroxidases: Anaerobic stopped-flow spectrophotometric studies on horseradish and tobacco peroxidises. Biochemical Journal, 313, 841-847.
[50] Cornish-Bowden, A. (1995) Fundamentals of enzyme kinetics. Portal Press Ltd, London.
[51] Cleland, W.W. (1979) Substrate inhibition. Methods in Enzymology, 63, 103-138.
[52] Hiner, A.N., Sidrach, L., Chazarra, S., Varón, R., Tudela, J., Garcia-Cánovas, F. and Rodríguez-López, J.N. (2004) Kinetic study of the effects of calcium ions on cationic artichoke (Cynara scolymus L.) peroxidase: Calcium binding, steady-state kinetics and reactions with hydrogen peroxide. Biochimie, 86, 667-676. doi:10.1016/j.biochi.2004.09.003
[53] Hosoya, T. (1960) Turnip peroxidase: I. Purification and physicochemical properties of multiple components in turnip peroxidise. The Journal of Biochemistry, 47, 369-381.
[54] Santimone, M. (1975) The mechanism of ferrocytochrome C oxidation by a horseradish isoperoxidase. Biochimie, 57, 91-96. doi:10.1016/S0300-9084(75)80114-3
[55] Yonetani, T. and Ray, G.S. (1966) Studies on cytochrome c peroxidase. 3. Kinetics of the peroxidasic oxidation of ferrocytochrome c catalyzed by cytochrome c peroxidise. The Journal of Biological Chemistry, 241, 700-706.
[56] Ronnberg, M. and Ellfolk, N. (1975) Pseudomonas cytochrome c peroxidase XI. Kinetics of the peroxidatic oxidation of Pseudomonas respiratory chain components. Acta Chemica Scandinavica Series B, 29, 719-727. doi:10.3891/acta.chem.scand.29b-0719
[57] Ronnberg, M., Araiso, T., Ellfolk, N. and Dunford, H.B. (1981) The reaction between reduced azurin and oxidized cytochrome c peroxidase from Pseudomonas aeruginosa. The Journal of Biological Chemistry, 256, 2471-2474.
[58] Wariishi, H. and Gold, M.H. (1990) Lignin peroxidase Compound III. Mechanism of formation and decomposition. The Journal of Biological Chemistry, 265, 2070-2077.
[59] Wariishi, H., Akikeswaran, L. and Gold, M.H. (1988) Manganese peroxidase from the basidiomycete Phanerochaete chrysosporium: Spectral characterization of the oxidized states and the catalytic cycle. Biochemistry, 27, 5365-5370. doi:10.1021/bi00414a061
[60] Timofeevski, S.L., Reading, N.S. and Aust, S.D. (1998) Mechanisms for protection against inactivation of manganese peroxidase by hydrogen peroxide. Archives of Biochemistry and Biophysics, 356, 287-295. doi:10.1006/abbi.1998.0776
[61] Hiner, A.N., Hernandez-Ruíz, J., Arnao, M.B., GarcíaCanovas, F. and Acosta, M. (1996) A comparative study of the purity, enzyme activity, and inactivation by hydrogen peroxide of commercially available horseradish peroxidase isoenzymes A and C. Biotechnology and Bioen- gineering, 50, 655-662. doi:10.1002/(SICI)1097-0290(19960620)50:6<655::AID-BIT6>3.0.CO;2-J
[62] Rodriguez-Lopez, J.N., Espin, J.C., Del Amor, F., Tudela, J., Martinez, V., Cerdá, A. and Garcia-Cánovas, F. (2000) Purification and kinetic characterization of an anionic peroxidase from melon (Cucumis melo L.) cultivated under different salinity conditions. Journal of Agricultural and Food Chemistry, 48, 1537-1541. doi:10.1021/jf9905774
[63] Arnao, M.B., Acosta, M., del Río, J.A., Varón, R. and García-Cánovas, F. (1990) A kinetic study on the suicide inactivation of peroxidase by hydrogen peroxide. Biochimica et Biophysisca Acta, 1041, 43-47.
[64] Bayton, K.J., Bewtra, J.K., Biswas, N. and Taylor, K.E. (1994) Inactivation of horseradish peroxidase by phenol and hydrogen peroxide: A kinetic investigation. Biochimica et Biophysica Acta, 1206, 272-278. doi:10.1016/0167-4838(94)90218-6
[65] Walsh, C.T. (1978) Enzymatic reaction mechanisms. Freeman Inc., San Francisco.
[66] Ator, M.A., David, S.K. and Ortiz de Montellano, P.R. (1987) Protein control of prosthetic heme reactivity. Reaction of substrates with the heme edge of horseradish peroxidise. The Journal of Biological Chemistry, 262, 14954-14960.
[67] Smith, A,T., Sanders, S.A., Thorneley, R.N.F., Burke, J.F. and Bray, R.R.C. (1992) Characterisation of a haem active-site mutant of horseradish peroxidase, Phe41-Val, with altered reactivity towards hydrogen peroxide and reducing substrates. European Journal of Biochemistry, 207, 507-519. doi:10.1111/j.1432-1033.1992.tb17077.x

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.