[1]
|
Sakaguchi, S. and Powrie, F. (2007) Emerging challenges in regulatory T cell function and biology. Science, 317, 627-629. doi:10.1126/science.1142331
|
[2]
|
Sakaguchi, S. (2005) Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nature Immunology, 6, 345-352. doi:10.1038/ni1178
|
[3]
|
Fontenot, J.D., Gavin, M.A. and Rudensky, A.Y. (2003) FOXP3 programs the development and function of CD4+CD25+ regulatory T cells. Nature Immunology, 4, 330-336. doi:10.1038/ni904
|
[4]
|
Hori, S., Nomura, T. and Sakaguchi, S. (2003) Control of regulatory T cell development by the transcription factor FOXP3. Science, 299, 1057-1061.
doi:10.1126/science.1079490
|
[5]
|
Wang, J., Ioan-Facsinay, A., van der Voort, E.I., Huizinga, T.W. and Toes, R.E. (2007) Transient expression of FOXP3 in human activated nonregulatory CD4+ T cells. European Journal of Immunology, 37, 129-138.
doi:10.1002/eji.200636435
|
[6]
|
Ziegler, S.F. (2007) FOXP3: not just for regulatory T cells anymore. European Journal of Immunology, 37, 21-23. doi:10.1002/eji.200636929
|
[7]
|
Walker, M.R., Kasprowicz, D.J., Gersuk, V.H., Benard, A., Van Landeghen, M., et al. (2003) Induction of FoxP3 and acquisition of T regulatory activity by stimulated human CD4+CD25– T cells. Journal of Clinical Investigation, 112, 1437-1443.
|
[8]
|
Allan, S.E., Crome, S.Q., Crellin, N.K., Passerini, L., Steiner, T.S., et al. (2007) Activation-induced FOXP3 in human T effector cells does not suppress proliferation or cytokine production. International Immunology, 19, 345-354. doi:10.1093/intimm/dxm014
|
[9]
|
Tran, D.Q., Ramsey, H. and Shevach, E.M. (2007) Induction of FOXP3 expression in naive human CD4+ FOXP3 T cells by T-cell receptor stimulation is transforming growth factor-beta dependent but does not confer a regulatory phenotype. Blood, 110, 2983-2990.
doi:10.1182/blood-2007-06-094656
|
[10]
|
Yagi, H., Nomura, T., Nakamura, K., Yamazaki, S., Kitawaki, T., et al. (2004) Crucial role of FOXP3 in the development and function of human CD25+CD4+ regulatory T cells. International Immunology, 16, 1643-1656.
doi:10.1093/intimm/dxh165
|
[11]
|
Walunas, T.L., Lenschow, D.J., Bakker, C.Y., Linsley, P.S., Freeman, G.J., et al. (1994) CTLA-4 can function as a negative regulator of T cell activation. Immunity, 1, 405-413. doi:10.1016/1074-7613(94)90071-X
|
[12]
|
Takahashi, T., Tagami, T., Yamazaki, S., Uede, T., Shimizu, J., et al. (2000) Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. Journal of Experimental Medicine, 192, 303-310.
doi:10.1084/jem.192.2.303
|
[13]
|
Fallarino, F., Grohmann, U., Hwang, K.W., Orabona, C., Vacca, C., et al. (2003) Modulation of tryptophan catabolism by regulatory T cells. Nature Immunology, 4, 1206-1212. doi:10.1038/ni1003
|
[14]
|
Munn, D.H., Sharma, M.D. and Mellor, A.L. (2004) Ligation of B7-1/B7-2 by human CD4+ T cells triggers indoleamine 2,3-dioxygenase activity in dendritic cells. Journal of Immunology, 172, 4100-4110.
|
[15]
|
Ruprecht, C.R., Gattorno, M., Ferlito, F., Gregorio, A., Martini, A., et al. (2005) Coexpression of CD25 and CD27 identifies FoxP3+ regulatory T cells in inflamed synovia. Journal of Experimental Medicine, 201, 1793-1803. doi:10.1084/jem.20050085
|
[16]
|
Koenen, H.J., Fasse, E. and Joosten, I. (2005) CD27/ CFSE-based ex vivo selection of highly suppressive alloantigen-specific human regulatory T cells. Journal of Immunology, 174, 7573-7583.
|
[17]
|
Sakaguchi, S. (2004) Naturally arising CD4+ regulatory t cells for immunologic self-tolerance and negative control of immune responses. Annual Review of Immunology, 22, 531-562. doi:10.1146/annurev.immunol.21.120601.141122
|
[18]
|
Jaeckel, E., von Boehmer, H. and Manns, M.P. (2005) Antigen-specific FOXP3-transduced T-cells can control established type 1 diabetes. Diabetes, 54, 306-310.
doi:10.2337/diabetes.54.2.306
|
[19]
|
Kukreja, A., Cost, G., Marker, J., Zhang, C., Sun, Z., et al. (2002) Multiple immuno-regulatory defects in type-1 diabetes. Journal of Clinical Investigation, 109, 131-140.
|
[20]
|
Lindley, S., Dayan, C.M., Bishop, A., Roep, B.O., Peakman, M., et al. (2005) Defective suppressor function in CD4(+)CD25(+) T-cells from patients with type 1 diabetes. Diabetes, 54, 92-99. doi:10.2337/diabetes.54.1.92
|
[21]
|
Brusko, T.M., Wasserfall, C.H., Clare-Salzler, M.J., Schatz, D.A. and Atkinson, M.A. (2005) Functional defects and the influence of age on the frequency of CD4+ CD25+ T-cells in type 1 diabetes. Diabetes, 54, 1407-1414.
doi:10.2337/diabetes.54.5.1407
|
[22]
|
Tree, T.I., Roep, B.O. and Peakman, M. (2006) A mini meta-analysis of studies on CD4+CD25+ T cells in human type 1 diabetes: Report of the Immunology of Diabetes Society T Cell Workshop. Annals of the New York Academy of Sciences, 1079, 9-18.
doi:10.1196/annals.1375.002
|
[23]
|
Atkinson, M.A. and Eisenbarth, G.S. (2001) Type 1 diabetes: New perspectives on disease pathogenesis and treatment. Lancet, 358, 221-229.
doi:10.1016/S0140-6736(01)05415-0
|
[24]
|
Baecher-Allan, C., Brown, J.A., Freeman, G.J. and Hafler, D.A. (2001) CD4+CD25high regulatory cells in human peripheral blood. Journal of Immunology, 167, 1245-1253.
|
[25]
|
Hoffmann, P., Eder, R., Kunz-Schughart, L.A., Andreesen, R. and Edinger, M. (2004) Large-scale in vitro expansion of polyclonal human CD4(+)CD25high regulatory T cells. Blood, 104, 895-903.
doi:10.1182/blood-2004-01-0086
|
[26]
|
Putnam, A.L., Vendrame, F., Dotta, F. and Gottlieb, P.A. (2005) CD4+CD25high regulatory T cells in human autoimmune diabetes. Journal of Autoimmunity, 24, 55-62.
doi:10.1016/j.jaut.2004.11.004
|
[27]
|
Brusko, T., Wasserfall, C., McGrail, K., Schatz, R., Viener, H.L., et al. (2007) No alterations in the frequency of FOXP3+ regulatory T-cells in type 1 diabetes. Diabetes, 56, 604-612. doi:10.2337/db06-1248
|
[28]
|
Lawson, J.M., Tremble, J., Dayan, C., Beyan, H., Leslie, R.D., et al. (2008) Increased resistance to CD4+CD25hi regulatory T cell-mediated suppression in patients with type 1 diabetes. Clinical & Experimental Immunology, 154, 353-359. doi:10.1111/j.1365-2249.2008.03810.x
|
[29]
|
Schneider, A., Rieck, M., Sanda, S., Pihoker, C., Greenbaum, C., et al. (2008) The effector T cells of diabetic subjects are resistant to regulation via CD4+ FOXP3+ regulatory T cells. Journal of Autoimmunity, 181, 7350-7355.
|
[30]
|
Marwaha, A.K., Crome, S.Q., Panagiotopoulos, C., Berg, K.B., Qin, H., et al. (2010) Cutting edge: Increased IL-17-secreting T cells in children with new-onset type 1 diabetes. Journal of Autoimmunity, 185, 3814-3818.
|
[31]
|
Read, S., Malmstrom, V. and Powrie, F. (2000) Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25(+)CD4(+) regulatory cells that control intestinal inflammation. Journal of Experimental Medicine, 192, 295-302. doi:10.1084/jem.192.2.295
|
[32]
|
Tang, Q., Boden, E.K., Henriksen, K.J., Bour-Jordan, H., Bi, M., et al. (2004) Distinct roles of CTLA-4 and TGF-beta in CD4+CD25+ regulatory T cell function. Eur Journal of Immunology, 34, 2996-3005.
doi:10.1002/eji.200425143
|
[33]
|
Sakaguchi, S., Ono, M., Setoguchi, R., Yagi, H., Hori, S., et al. (2006) FOXP3+ CD25+ CD4+ natural regulatory T cells in dominant self-tolerance and autoimmune disease. Immunological Reviews, 212, 8-27.
doi:10.1111/j.0105-2896.2006.00427.x
|
[34]
|
Venken, K., Hellings, N., Thewissen, M., Somers, V., Hensen, K., et al. (2008) Compromised CD4+ CD25(high) regulatory T-cell function in patients with relapsing-remitting multiple sclerosis is correlated with a reduced frequency of FOXP3-positive cells and reduced FOXP3 expression at the single-cell level. Immunology, 123, 79-89. doi:10.1111/j.1365-2567.2007.02690.x
|
[35]
|
Duggleby, R.C., Shaw, T.N., Jarvis, L.B., Kaur, G. and Gaston, J.S. (2007) CD27 expression discriminates between regulatory and non-regulatory cells after expansion of human peripheral blood CD4+ CD25+ cells. Immunology, 121, 129-139.
doi:10.1111/j.1365-2567.2006.02550.x
|