Medpor® Acts on Stem Cells Derived from Peripheral Blood


Porous polyethylene (PP or Medpor®) is an alloplastic material used worldwide for craniofacial reconstruction. Although several clinical studies are available, how this material alters osteoblast activity to promote bone formation is poorly understood. To study how PP can induce osteoblast differentiation in mesenchymal stem cells, the expression levels of bone related genes and mesenchymal stem cells marker were analyzed, using real time Reverse Transcription-Polymerase Chain Reaction. PP causes induction of osteoblast transcriptional factor RUNX2 and of the bone related genes osteocalcin (BGLAP) and alkaline phosphatase (ALPL). In contrast the expression of ENG was decreased in stem cells treated with PP respect to untreated cells, indicating the differentiation effect of this biomaterial on stem cells. The obtained results can be relevant to better understand the molecular mechanism of bone regeneration and as a model for comparing other materials with similar clinical effects.

Share and Cite:

Sollazzo, V. , Palmieri, A. , Girardi, A. , Farinella, F. , Brunelli, G. , Spinelli, G. and Carinci, F. (2010) Medpor® Acts on Stem Cells Derived from Peripheral Blood. Materials Sciences and Applications, 1, 13-18. doi: 10.4236/msa.2010.11003.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] T. Wellisz, W. Dougherty and J. Gross, “Craniofacial Applications for the Medpor Porous Polyethylene Flexblock Implant,” Journal of Craniofacial Surgery, Vol. 3, 1992, pp. 101-107.
[2] J. Park and M. Guthikonda, “The Medpor Sheet as a Sellar Buttress after Endonasal Transsphenoidal Surgery: Technical Note,” Surgical Neurology, Vol. 61, 2004, pp. 488-492; discussion 493.
[3] T. Wellisz, “Clinical Experience with the Medpor Porous Polyethylene Implant,” Aesthetic Plastic Surgery, Vol. 17, 1993, pp. 339-344.
[4] T. Wellisz, “Reconstruction of the Burned External Ear Using a Medpor Porous Polyethylene Pivoting Helix Framework,” Plastic and Reconstructive Surgery, Vol. 91, 1993, pp. 811-818.
[5] J. J. Romano, N. T. Iliff and P. N. Manson, “Use of Medpor Porous Polyethylene Implants in 140 patients with Facial Fractures,” Journal of Craniofacial Surgery, Vol. 4, 1993, pp. 142-147.
[6] J. W. Karesh and S. C. Dresner, “High-Density Porous Polyethylene (Medpor) as a Successful Anophthalmic Socket Implant,” Ophthalmology, Vol. 101, 1994, pp. 1688-1695; discussion 1695-1686.
[7] J. F. Wong, C. N. Soparkar and J. R. Patrinely, “Correction of Lower Eyelid Retraction with High Density Porous Polyethylene: The Medpor((R)) Lower Eyelid Spacer,” Orbit, Amsterdam, Vol. 20, 2001, pp. 217-225.
[8] T. Romo, 3rd, A. P. Sclafani, P. Sabini, “Use of Porous High-Density Polyethylene in Revision Rhinoplasty and in the Platyrrhine Nose,” Aesthetic Plastic Surgery, Vol. 22, 1998, pp. 211-221.
[9] F. Carinci, A. Palmieri, V. Perrotti, A. Piattelli, R. Cenzi, G. Brunell, M. Martinelli, M. Arlotti and F. Pezzetti, “Genetic Effects of Medpor on Osteoblast-Like Cells,” Journal of Craniofacial Surgery, Vol. 17, 2006, pp. 1243- 1250.
[10] A. Palmieri, F. Pezzetti, G. Brunelli, M. Martinelli, L. Scapoli, M. Arlotti, E. Masiero and F. Carinci, “Medpor Regulates Osteoblast's MicroRNAs,” Bio-Medical Materials and Engineering, Vol. 18, 2008, pp. 91-97.
[11] K. J. Livak and T. D. Schmittgen, “Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2(-Delta Delta C(T)) Method,” Methods, San Diego, Vol. 25, 2001, pp. 402-408.
[12] A. Alhadlaq and J. J. Mao, “Mesenchymal Stem Cells: Isolation and Therapeutics,” Stem Cells and Development, Vol. 13, 2004, pp. 436-448.
[13] M. F. Pittenger, A. M. Mackay, S. C. Beck, R. K. Jaiswal, R. Douglas, J. D. Mosca, M. A. Moorman, D. W. Simonetti, S. Craig and D. R. Marshak, “Multilineage Potential of Adult Human Mesenchymal Stem Cells,” Science, New York, Vol. 284, 1999, pp. 143-147.
[14] H. J. Jin, S. K. Park, W. Oh, Y. S. Yang, S. W. Kim and S. J. Choi, “Down-Regulation of CD105 is Associated with Multi-Lineage Differentiation in Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells,” Biochemical and Biophysical Research Communications, Vol. 381, 2009, pp. 676-681.
[15] F. P. Barry, R. E. Boynton, S. Haynesworth, J. M. Murphy and J. Zaia, “The Monoclonal Antibody SH-2, Raised against Human Mesenchymal Stem Cells, Recognizes an Epitope on Endoglin (CD105),” Biochemical and BioPhysical Research Communications, Vol. 265, 1999, pp. 134-139.
[16] M. Jakob, O. Demarteau, D. Schafer, B. Hintermann, W. Dick, M. Heberer and I. Martin, “Specific Growth Factors during the Expansion and Redifferentiation of Adult Human Articular Chondrocytes Enhance Chondrogenesis and Cartilaginous Tissue Formation in Vitro,” Journal of Cellular Biochemistry, Vol. 81, 2001, pp. 368-377.
[17] S. E. Haynesworth, M. A. Baber and A. I. Caplan, “Cell Surface Antigens on Human Marrow-Derived Mesenchymal Cells are Detected by Monoclonal Antibodies,” Bone, Vol. 13, 1992, pp. 69-80.
[18] E. Aubin, J. B. Lian and G. S. Stein, “Bone Formation: Maturation and Functional Activities of Osteoblast Lineage cells,” In: M. J. Favus, Ed., Primer on the Metabolic Bone Diseases and Disorders on Mineral Metabolism, The American Society for Bone and Mineral Research, Washington, D. C., 2003, pp. 13-28.
[19] L. R. McCabe, C. Banerjee, R. Kundu, R. J. Harrison, P. R. Dobner, J. L. Stein, J. B. Lian and G. S. Stein, “Developmental Expression and Activities of Specific Fos and Jun Proteins are Functionally Related to Osteoblast Maturation: Role of Fra-2 and Jun D during differentiation,” Endocrinology, Vol. 137, 1996, pp. 4398-4408.
[20] J. M. Kim, S. U. Lee, Y. S. Kim, Y. K. Min and S. H. Kim, “Baicalein Stimulates Osteoblast Differentiation via Coordinating Activation of MAP Kinases and Transcription Factors,” Journal of Cellular Biochemistry, Vol. 104, 2008, pp. 1906-1917.
[21] M. D. McKee, M. C. Farach-Carson, W. T. Butler, P. V. Hauschka and A. Nanci, “Ultrastructural Immunolocalization of Noncollagenous (Osteopontin and Osteocalcin) and Plasma (Albumin and Alpha 2HS-Glycoprotein) Proteins in Rat Bone,” Journal of Bone and Mineral Research, Vol. 8, 1993, pp. 485-496.
[22] R. A. Dodds, J. R. Connor, I. E. James, E. L. Rykaczewski, E. Appelbaum, E. Dul and M. Gowen, “Human Osteoclasts, not Osteoblasts, Deposit Osteopontin onto Resorption Surfaces: An in Vitro and ex Vivo Study of Remodeling Bone,” Journal of Bone and Mineral Research, Vol. 10, 1995, pp. 1666-1680.
[23] C. Ohtsuki, M. Kamitakahara and T. Miyazaki, “Bioactive Ceramic-Based Materials with Designed Reactivity for Bone Tissue Regeneration,” Journal of the Royal Society, Interface / the Royal Society, Vol. 6, Supplement 3, 2009, pp. S349-360.
[24] M. Suuriniemi, V. Kovanen, A. Mahonen, M. Alen, Q. Wang, A. Lyytikainen and S. Cheng, “COL1A1 Sp1 Polymorphism Associates with Bone Density in Early Puberty,” Bone, Vol. 39, 2006, pp. 591-597.
[25] T. F. Chan, A. Poon, A. Basu, N. R. Addleman, J. Chen, A. Phong, P. H. Byers, T. E. Klein and P. Y. Kwok, “Natural Variation in Four Human Collagen Genes across an Ethnically Diverse Population,” Genomics, Vol. 91, 2008, pp. 307-314.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.