Temperature and Magnetic Resonance Characteristics of Zinc, Manganese, Gadolinium, Gold, Iron Magnetic Nanoparticles and Cytokine Synergy in Hyperthermia
Saleh S. Hayek, Rakesh Sharma, Soonjo Kwon, Avdhesh Sharma, Ching J.Chen
DOI: 10.4236/jbise.2008.13031   PDF    HTML     6,179 Downloads   13,059 Views   Citations

Abstract

The temperature and magnetic moment depend-ence for assessing localized heating utilizing a new class of Manganese-Zinc-Gadolinium mag-netic nanoparticles was studied. These particles showed heating effect when subjected to alter-nating filed. Alternatively, a new approach was used to get disperse heating without spot heating by using the synthesis of particles at controlled Curie temperature of less than 44oC. The study reports a simple synthesis of Mn0.5Zn0.5GdxFe(2-x)O4 nanoparticles using chemical co- precipita-tion technique. The particles exhibited Curie temperature of 42篊 and high magnitude of mag-netic moments. The particles showed sigmoid behavior of dependence between temperature and magnetic moments. The Nuclear Magnetic Resonance spectroscopy showed T1 depend-ence on temperature in the range of 10-45篊. The particles may have high promise for self con-trolled magnetic hyperthermia application and its monitoring.

Share and Cite:

Hayek, S. , Sharma, R. , Kwon, S. , Sharma, A. and J.Chen, C. (2008) Temperature and Magnetic Resonance Characteristics of Zinc, Manganese, Gadolinium, Gold, Iron Magnetic Nanoparticles and Cytokine Synergy in Hyperthermia. Journal of Biomedical Science and Engineering, 1, 182-189. doi: 10.4236/jbise.2008.13031.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] W. Busch, (1966) Rheinisch-Westfael. Akad. Nat. Ing. Wirtschaftswiss Vortr. 23, 28.
[2] W. B. Coley, Am. J. Med. Sci. 105-488.
[3] G. Crile, (1963) Cancer Res. 23, 372.
[4] R. Cavaliere, E. C. Ciocatta, B. C Giovanella, C. Heidelberger, R. D. et al (1967). Cancer 20, 1351.
[5] J. W. Hand and G. ter Haar, (1981) Br. J. Radiol. 54, 443.
[6] D. A. Christensen and C. H. Durney, (1981) J. Microwave Power 16 89.
[7] J. W. Strohbehn and E. B. Douple, (1984) IEEE Trans. Biomed. Eng. BME-31, 779.
[8] C. C. Vernon, J. W. Hand, S. B. Field, et al. (1996) Int. J. Rad. On-col. Biol. Phys. 35 731-744.
[9] J. Van der Zee, (2002) Annals Oncology 13 1173-1184.
[10] G. Multhoff, C. Botzler, M. Wiesnet, E. Muller, T. Meier, W. Wil-manns and R. D. Issle, (1995) Int. J.Cancer 61, 272-279.
[11] B. Park, B. S. Koo, Y. K. Kim, M. K. Kim, (2002) Korean J Radiol, 3, 98-104.
[12] S. Deger, D. Boehmer, I. Turk, J. Roigas, V. Budach, S. Loening, (2002) European Urology, 42, 147-153.
[13] A. Jordan, R. Scholz, P. Wust, H. Fahling. (1999) R. Felix, J Mag Mag Matr, 201, 413-419.
[14] N. Brusentsov, L. Nikitin, T. Brusentsova, A. Kuznetsov, F. Bayburtskiy, L.Schumakov, N.Jurchenko, J. Mag. (2002) Mag. Matr., 252, 378-380.
[15] E. Auzans, D. Zins, M. M. Maiorov, E. Blums, R. Massart, (1999) Magn. Gidrodinamika 38, 78-86.
[16] E. Auzans, D. Zins, E. Blums, R. Massart, (1999) J. Mater. Sci. 34, 1253 – 1260.
[17] E. Auzans, (1999) Mn-Zn ferrite nanoparticles for water- and hy-drocarbone-based ferrofluids:preparation and properties, Thesis.
[18] C. Kittel, Intro. To Solid State Physics, John Wiley & Sons, NY, 4th Ed.
[19] G. Burns, (1985)Solid State Physics, Academic Press Inc.
[20] K. Schroder, (1978)Elec., Mag. And Thermal Properties of Solid Mat., Marcel Dekker Inc. NY.
[21] R. Kubo, T. Nagamiya, (1969) Solid State Physics, McGraw Hill.
[22] J. Smit And H. P. J. Wijn, (1959) Ferrites, John Wiley & Sons, NY, 139-142.
[23] R. V. Upadhyay, R.V. Mehta, K. Parekh, D. Shrinivas, R.P. Pant, J. Magn. (1999) Magn. Mater. 201, 129 – 132.
[24] F. Settecase, M.S. Sussman, (2007) TPL Roberts, Contrast Media Mol Imaging, 2, 50-54.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.