A New Preconditioner with Two Variable Relaxation Parameters for Saddle Point Linear Systems with Highly Singular(1,1) Blocks

DOI: 10.4236/ajcm.2011.14030   PDF   HTML     4,594 Downloads   8,034 Views   Citations


In this paper, we provide new preconditioner for saddle point linear systems with (1,1) blocks that have a high nullity. The preconditioner is block triangular diagonal with two variable relaxation paremeters and it is extension of results in [1] and [2]. Theoretical analysis shows that all eigenvalues of preconditioned matrix is strongly clustered. Finally, numerical tests confirm our analysis.

Share and Cite:

Y. Zeng and C. Li, "A New Preconditioner with Two Variable Relaxation Parameters for Saddle Point Linear Systems with Highly Singular(1,1) Blocks," American Journal of Computational Mathematics, Vol. 1 No. 4, 2011, pp. 252-255. doi: 10.4236/ajcm.2011.14030.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] T. Z. Huang, G. H. Cheng and S. Q. Shen, “New Block Triangular Preconditioners for Saddle Point Linear Sys- tems with Highly Sigular (1,1) Blocks,” Compututer Phy- sics Communications, Vol. 180, No. 2, 2009, pp. 192-196.
[2] T. Rees and C. Grief, “A Preconditioner for Linear Sys- tems Arising from Interios Point Optimization Methods,” SIAM Journal of Scientific Computing, Vol. 29, No. 5, 2007, pp. 1992-2007. doi:10.1137/060661673
[3] S. Wright, “Stability of Augmented System Factoriza- tions in Intrerior-Point Methods,” SIAM Journal of Matrix Analysis and Applications, Vol. 18, No. 1, 1997, pp. 191-222. doi:10.1137/S0895479894271093
[4] V. Girault and P. Raviart, “Finite Elment methods for Na- vier-Stokes Equations,” Springer-Verlag, Berlin, 1986. doi:10.1007/978-3-642-61623-5
[5] C. Grief and D. Sch?tzau, “Preconditioners for Discretized Time-Harmonic Maxwell Equations in Mixed Form,” Nu- merical Linear Algebra with Applications, Vol. 14, No. 4, 2007, pp. 281-297. doi:10.1002/nla.515
[6] M. Benzi, G. H. Golub and J. Lieson, “Numerical Solution of Saddle Point Problems,” Acta Numerica, Vol. 14, 2005, pp.1-137. doi:10.1017/S0962492904000212
[7] G. H. Golub and C. Grief, “On Solving Block Structured Indefinite Linear Systems,” SIAM Journal of Scientific Computing, Vol. 24, No. 6, 2003, pp. 2076-2092. doi:10.1137/S1064827500375096
[8] C. Grief and D. Sch?tzau, “Preconditioners for Saddle point linear systems with highly singular (1,1) blocks, Electronic Transactions on Numerical Analysis, Vol. 22, 2006, pp. 114-121.
[9] P. Monk, “Finite Elements for Maxwell’s Quations,” Ox- frod University Press, New York, 2003.
[10] J. C. Nédélec, “A New Family of Mixed Finite Elements in ?3,” Numerische Mathematik, Vol. 50, No. 1, 1986, pp. 57-81. doi:10.1007/BF01389668

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.