Studies on antibacterial activity and biochemical/biophysical properties of phytocystatin purified from Catharanthus roseus (Madagascar Periwinkle): an evergreen subshrub commonly found in district bijnor (U.P.)
Garima Sharma, Mukesh Kumar, Sandeep Sharma
DOI: 10.4236/abb.2011.26057   PDF   HTML     6,185 Downloads   11,650 Views   Citations


In the present study two phytocystatins (thiol protease inhibitors) have been isolated and purified to homogeneity form Catharanthus roseusby a simple two step procedure using ammonium sulphate fractionation and gelfiltration chromatography on Sephacryl- 100HR.The two inhibitors were named as CRCI and CRCII (Catharanthus roseuscystatin I and II). CRCI and CRCII were purified with a fold purification of 1333.3, 1348.5 and percent yield of 18.18 and 16.35% respectively. The molecular weight of purified phytocystatins were 19.1 kDa and 16.9 kDa respectively, as determined by SDS-PAGE and mass spectrometry. Effect of denaturants like ureaon CRCI and II was analysed by Fluorescence spectroscopy. Results suggest an unfolding of CRCI and II. FTIR results show that structurally CRCI is different from CRCII. Hydrophobic interactions are observed over a longer timescale (5 - 150 min). Furthermore, fluorescence spectroscopy results show quenching of fluorescence intensity of CRC I and II, although to different extent, due to perturbations of the environment of aromatic residues in the protein. Both the cystatins showed strong inhibitory/antibacterial activity against E. coliand S. aureus

Share and Cite:

Sharma, G. , Kumar, M. and Sharma, S. (2011) Studies on antibacterial activity and biochemical/biophysical properties of phytocystatin purified from Catharanthus roseus (Madagascar Periwinkle): an evergreen subshrub commonly found in district bijnor (U.P.). Advances in Bioscience and Biotechnology, 2, 391-396. doi: 10.4236/abb.2011.26057.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Huxley, A. (1992) New RHS Dictionary of Gardening. Macmillan, Oxford.
[2] Machleidt, W., Sasaki, M., and Turk, V. (1986) Nomenclature and classification of the proteins homologous with the cysteine proteinase inhibitor chicken cystatin. Biochemical Journal, 236, 312.
[3] Ritonja, A., Machleidt, W. and Barrett, A.J. (1985) Amino acid sequence of the intracellular cysteine proteinase inhibitor cystatin B from human liver. Biochemical and Biophysical Research Communications, 131, 187-192. doi:10.1016/0006-291X(85)90216-5
[4] Brown, W.M. and Dziegelewska, K.M. (1997) Friends and relations of the cystatin super family-new members and their evolution. Protein Science, 6, 5-12. doi:10.1002/pro.5560060102
[5] Abe, K., Emori, Y., Kondo, H.,Susuki, K., Arai, S. (1987) Molecular cloningofa cysteine proteinase inhibitor of rice (oryzacystatin). Homology with animal cystatins and transient expression in the ripening process of rice seeds Journal of Biological Chemistry, 262, 16793.
[6] Abe, M., Abe, K., Iwabuchi, K.,Domoto, C. and Arai, S. (1994) CorncystatinI expressed in Escherichiacoli: Investigation of its inhibitory profile and occurrence in corn kernels. Journal of Biochemistry, 116, 488.
[7] Misaka, T., Kuroda, M., Iwabuchi,K., Abe, K. and Arai,S. (1996) Soyabean cystatin,a novel cysteine proteinase inhibitor in soyabean, is distinct in protein structure and gene organization from other cystatins of animal origin and plant origin. European Journal of Biochemistry, 240, 609. doi:10.1111/j.1432-1033.1996.0609h.x
[8] Lim, C.H., Lee, S.I., Chung, W.S., Park, S.H., Hwang, I. and Cho, M.J.(1996) Characterization of a cDNA encoding cysteine proteinase inhibitor from Chinese cabbage (Brassica campestris L.ssp. pekinensis) flowerbuds. Plant Molecular Biology, 30, 373. doi:10.1007/BF00020124
[9] Ojima, A., Shiota, H., Higashi, K., Kamada, H., Shimada, Y.I., Wadamasata,P., Satoh, S. (1997) Anextracellular in soluble inhibitor of cysteine proteinases in cell cultures And seeds of carrot. Plant Molecular Biology, 34, 99. doi:10.1023/A:1005842719374
[10] Xavier-Filho, J.(1992) Sementes e suasdefesas contra insetos. Projeto Multinacional de Biotecnologia e Ali-mentos. Organizacao dos Estados Americana, 1, 31
[11] Ryan, C.A. (1989) Proteinase inhibitor gene families: Strategies for transformation to improve plant defenses against herbivores. Bioessays, 10, 20. doi:10.1002/bies.950100106
[12] Solommon, M., Belenghi, B., Delledonne, M., Menachen, E. and Levine, A. (1999) The involvement of cysteine proteinase and proteinases inhibitor genes in the regulation of programmed cell death inplants. Plant Cell, 11, 431.
[13] Ceros, M. and Carbonell, J. (1993) Purification and characterization of thiol-protease induced during sense cence of unpollinated ovaries of Pisum sativum. Physiology Plant, 88, 267-274. doi:10.1111/j.1399-3054.1993.tb05498.x
[14] Franco, O.L. and Melo, F.R. (2000) Osmoprotectants-A plant strategy in response to osmotic stress Russ. Journal of Plant Physiology, 47, 137-144.
[15] Ryan, C.A. (1990) Protease Inhibitors in Plants: Genes for Improving Defenses Against Insects and Pathogens. Annual Review of Phytopathology, 28, 425. doi:10.1146/
[16] Schelp, F.P. and Pongpaew, P. (1988) Protection against cancer through nutritionally induced increase of endogenous thiol proteinases inhibitor-a hypothesis. International Journal of Epidemiology, 17, 287-292. doi:10.1093/ije/17.2.287
[17] Abe, K., Kondo, H., Watanabe, H., Emori, Y. and Arai, S. (1991) Oryzacystatins as the first well-defined cystatins of plant origin and their target proteinases in rice seeds. Biomedica Biochimica Acta, 50, 637-641.
[18] Soares-Costa, A., Beltramini, L.M., Theimann, O.H. and Henrique-Silva, F. (2002) A sugarcane cystatin: Recombinant expression, purification andantifungal activity. Biochemical and Biophysical Research Communications, 296, 1194-1199. doi:10.1016/S0006-291X(02)02046-6
[19] Pernas, M., Sanchez-Monge, R., Gomez, L., Salcedo, G. (1998) Antifungal activity of a Plant Cystatin. Plant Molecular Biology, 38, 1235-1242. doi:10.1023/A:1006154829118
[20] Ryan, S.N., McManus, M., T. and Laing, W.A. (2003) Identification and Characterisation of Proteinase Inhibitors and Their Genes from Seeds of Apple (Malus domestica). Journal of Biochemistry, 134, 31-42. doi:10.1093/jb/mvg110
[21] Brzin, J., Rogelj, B., Popovic, T., Strukelj, B. and Ritonja, A. (2000) Clitocypin, a new type of cysteine proteinase inhibitor from fruit bodies of mushroom Clitocybe nebularis. Journal of Biological Chemistry, 275, 20104-20109. doi:10.1074/jbc.M001392200
[22] Elliot, A. and Ambrose, E.J., (1950) Spectroscopy in the 3 Region of the infrared spectrum. Nature, 165, 921- 922.
[23] Timasheff, S.N., Susi, H. and Stevens, L. (1967) Infrared spectra and protein confirmation in aqueous solutions. Journal of Biological Chemistry, 242, 5467-5473.
[24] Ruegg, M., Metzger,V. and Susi,H (1975) Computer analysis of Characteristic infrared of globular proteins. Biopolymers, 14, 1465-1471. doi:10.1002/bip.1975.360140712
[25] Miyazawa, T. and Blout, E.R. (1961) The infrared spectra of polypeptides invarious conformations: Amide I and Amide II bands. Journal of the American Chemical Society, 83, 712-719. doi:10.1021/ja01464a042
[26] Karasov, C. (2001) Who reaps the benefits of biodi-versity? Environmental Health Perspectives, 109, A582- A587. doi:10.1289/ehp.109-a582
[27] Nallamsetty, S., Kundu, S. and Jagannadham, M.V. (2003) Purification and biochemical characterization of a high lyactive cysteine protease ervatamin a from the latex of Ervatamia coronaria. Journal of Protein Chemistry, 22, 1-12. doi:10.1023/A:1023047309023
[28] Oliveira, A. S., Pereira, R. A., Lima, L. M., Morais, A.H.A., Melo, F.R., Franco, O.L., Bloch Jr., C., Grossi-de-sa, M.F. and Sales M.P. (2002) Activity toward Bruchid pest of a Kunitz type inhibitor from seeds of the Algaroba tree (Prosopisjuliflora D.C.). Pesticide Biochemistry and Physiology, 72, 122-132. doi:10.1006/pest.2001.2591
[29] Deng, A., Irizarry, M., Nitsch, R.M., Growdon, J.H. and Rebeck, G.W. (2000) Elevation of cystatin C in susceptible neurons in Alzheimer’s disease. American Journal of Pathology, 159, 1061-1068.
[30] Trabandt, A., Gay, R.E., Fasbender, H.G. and Gay, S. (1991) Cathepsin B in synovial cells at the site of joint destruction in rheumatoid arthritis. Arthritis Rheum, 34, 1444. doi:10.1002/art.1780341116

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.