A Theoretical Study of Binary and Ternary Hydride-Bonded Complexes N(Beh2)...X with N = 1 or 2 and X = K+ or Ca+2
Boaz Galdino de Oliveira, Regiane Araújo
.
DOI: 10.4236/ojpc.2011.13018   PDF    HTML     6,380 Downloads   11,036 Views   Citations

Abstract

A theoretical study of hydride bonds formed between beryllium hydride and alkaline earth metal cations is presented. B3LYP/6-311++G(d,p) calculations were used for determining the optimized geometries of the BeH2...K+, BeH2...Ca+2, BeH2...K+...BeH2, and BeH2...Ca+2...BeH2 hydride-bonded complexes, where among them the first are binaries, whereas the last ones are ternaries with the calcium (Ca+2) and potassium (K+) ions mediating the interactions with the beryllium hydride (BeH2). A detailed structural analysis were performed, by which the yielded profiles are in good agreement with results of the infrared vibrational spectrum, mainly in regards to the existence of red-shifted modes followed by enlarged absorption intensity ratios of the B-H bonds of the binary complexes. The capability of either donating or accepting of protons among BeH2, K+, and Ca+2, is currently treated in conformity with Lewis’s acid/base theory, but is also interpreted through the application of the Quantum Theory of Atoms in Molecules (QTAIM), whose formalism consents in the molecular modeling of concentrations and depletions of charge density ruled by the Laplacian shapes, charge transference fluxes, as well as by the local virial theorem of the electronic density with quantification of the kinetic and potential energies along the bonds and interactions.

Share and Cite:

B. Oliveira and R. Araújo, "A Theoretical Study of Binary and Ternary Hydride-Bonded Complexes N(Beh2)...X with N = 1 or 2 and X = K+ or Ca+2," Open Journal of Physical Chemistry, Vol. 1 No. 3, 2011, pp. 131-140. doi: 10.4236/ojpc.2011.13018.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] [1] B. Koji?-Prodi? and K. Mol?anov, “The Nature of Hydrogen Bond: New Insights into Old Theories,” Acta Chimica Slovenica, Vol. 55, No. 4, 2008, pp. 692-708.
[2] S. J. Grabowski, “Hydrogen Bonding―New Insights,” Springer, Amsterdam, 2006.
[3] M. Brookhart, M. L. H. Green and G. Parkin, “Agostic Interactions in Transition Metal Compounds,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 104, No. 17, 2007, pp. 6908-6914. doi:10.1073/pnas.0610747104
[4] L. C. Dorsey and F. P. Gabba?, “R3C-H→SiFR3 Agostic Interaction,” Organometallics, Vol. 27, No.13, 2008, pp. 3065-3069. doi:10.1021/om8002619
[5] S. K. Ritter, “Halogen Bonding Begins to Fly,” Chemical & Engineering News, Vol. 87, No. 38, 2009, pp. 39-42. doi:10.1021/cen-v087n038.p039
[6] N. J. M. Amezaga, S. C. Pamies, N. M. Peruchena and G. L. Sosa, “Halogen Bonding: A Study Based on the Electronic Charge Density,” Journal of Physical Chemistry B, Vol. 114, No. 17, 2010, pp. 552-562. doi:10.1021/jp907550k
[7] B. G. Oliveira, R. C. M. U. Araújo, E. S. Leite and M. N. Ramos, “A Theoretical Analysis of Topography and Molecular Parameters of the CFCl3???O3 Complex: Linear and Bifurcate Halogen-Oxygen Bonding Interactions,” International Journal of Quantum Chemistry, Vol. 111, No. 1, 2011, pp. 111-116. doi:10.1002/qua.22397
[8] B. G. Oliveira and M. L. A. A. Vasconcellos, “A B3LYP and QTAIM Study of a New Proton Donor for Dihydrogen Bonds: The Case of the C2H5+???nBeH2 Complexes (n = 1 or 2),” Journal of Structural Chemistry, Vol. 20, No. 5, 2009, pp. 897-902. doi:10.1007/s11224-009-9489-x
[9] B. G. Oliveira and M. L. A. A. Vasconcellos, “The Ethyl Cation as Proton Donor for Dihydrogen Bonds in the mC2H5+???nMgH2 (m = 1 or 2 and n = 1 or 2) Complex: A Theoretical Study,” Inorganic Chemistry Communications, Vol. 12, No. 11, 2009, pp. 1142-1144. doi:10.1016/j.inoche.2009.09.010
[10] S. L. Capim, S. R. Santana, B. G. Oliveira, G. B. Rocha and M. L. A. A. Vasconcellos, “Revisiting the Origin of the Preferential π-π Stacking Conformation of the (+)-8-Phenylmenthyl Acrylate,” Journal of the Brazilian Chemical Society, Vol. 21, No. 9, 2010, pp. 1718-1726. doi:10.1590/S0103-50532010000900018
[11] S. Zdravkovi? and M. V. Satari?, “Stacking Interaction in DNA Molecule,” Journal of Computational and Theoretical Nanoscience, Vol. 7, No. 10, 2010, pp. 2031-2035. doi:10.1166/jctn.2010.1580
[12] G. R. Desiraju, “A Bond by Any Other Name,” Angewandte Chemie International Edition, Vol. 50, No. 1, 2010, pp. 2-10.
[13] S. J. Grabowski, W. A. Sokalski and J. Leszczynski, “Hydride Bonding―Ab initio Studies of BeH2???Li+, BeH2???Na+ and BeH2???Mg2+ Model Systems,” Chemical Physics Letters, Vol. 422, No. 4-6, 2006, pp. 334-339. doi:10.1016/j.cplett.2006.01.120
[14] M. Yá?ez, P. Sanz, O. Mó, I. Alkorta and J. Elguero, “Beryllium Bonds, Do They Exist?” Journal of Chemical Theory and Computation, Vol. 5, No. 10, 2009, pp. 2763-2771. doi:10.1021/ct900364y
[15] S. J. Grabowski, “BeH2 as a Proton-Accepting Molecule for Dihydrogen Bonded Systems―ab initio Study,” Journal of Molecular Structure, Vol. 553, No. 1-3, 2000, pp. 151-156. doi:10.1016/S0022-2860(00)00576-7
[16] S. J. Grabowski, “What Is the Covalency of Hydrogen Bonding?” Chemical Reviews, Vol. 111, No. 4, 2011, pp. 2597-2625. doi:10.1021/cr800346f
[17] B. G. Oliveira, R. C. M. U. Araújo and M. N. Ramos, “Multiple Proton Donors on BeH2???2HCl Trimolecular Dihydrogen-Bonded Complex: Some Theoretical Insights,” Journal of Structural Chemistry, Vol. 19, No. 4, 2008, pp. 665-670. doi:10.1007/s11224-008-9344-5
[18] B. G. Oliveira, R. C. M. U. Araújo, J. J. Silva and M. N. Ramos, “A Theoretical Study of Three and Four Proton Donors on Linear HX???BeH2???HX and Bifurcate BeH2???2HX Trimolecular Dihydrogen-Bonded Complexes with X = CN and NC,” Journal of Structural Chemistry, Vol. 21, No. 1, 2010, pp. 221-228. doi:10.1007/s11224-009-9567-0
[19] B. Illien, K. Evain, M. Berthelot and C. Laurence, “An Experimental and Theoretical Study of the Preferred Hydrogen Bonding Site of Methyl Isothiocyanate,” Journal of Physical Organic Chemistry, Vol. 16, No. 9, 2003, pp. 608-614. doi:10.1002/poc.652
[20] G. Litwinienko, G. A. DiLabio and K. U. Ingold, “A Theoretical and Experimental Investigation of Some Unusual Intermolecular Hydrogen-Bond IR Bands— Appearances Can Be Deceptive,” Canadian Journal of Chemistry, Vol. 84, No. 10, 2006, pp. 1371-1379. doi:10.1139/v06-097
[21] B. G. Oliveira, R. C. M. U. Araújo, A. B. Carvalho and M. N. Ramos, “A Chemometrical Study of Intermolecular Properties of Hydrogen-Bonded Complexes Formed by C2H4O???HX and C2H5N???HX with X = F, CN, NC and CCH,” Journal of Molecular Modeling, Vol. 15, No. 4, 2009, pp. 421-432. doi:10.1007/s00894-008-0422-9
[22] B. G. Oliveira, R. C. M. U. Araújo, A. B. Carvalho, M. N. Ramos, M. Z. Hernandes and K. R Cavalcante, “A Theoretical Study of the Solvent Effects in Ethylene Oxide: Hydrofluoric Acid Complex Using Continuum and New Discrete Models,” Journal of Molecular Structure (THEOCHEM), Vol. 802, No. 1-3, 2007, pp. 91-97. doi:10.1016/j.theochem.2006.09.002
[23] M. L. A. A. Vasconcellos, B. G. Oliveira and L. F. C. C. Leite, “The Acidity of Analogous Ammonium Cations: A Description of the Solvent Effect through the Attainment of Hydration Clusters Using the AGOA Methodology,” Journal of Molecular Structure (THEOCHEM), Vol. 860, No. 1-3, 2008, pp. 13-17. doi:10.1016/j.theochem.2008.03.023
[24] A. Y. Li, “Theoretical Investigation of Hydrogen Bonds between CO and HNF2, H2NF and HNO,” Journal of Physical Chemistry A, Vol. 110, No. 37, 2006, pp. 10805-10821. doi:10.1021/jp062291p
[25] M. Kamiya, T. Tsuneda and K. Hirao, “A Density Functional Study of van der Waals Interactions,” Journal of Chemical Physics, Vol. 117, No. 13, 2002, pp. 6010-6014. doi:10.1063/1.1501132
[26] M. Lozynski, D. Rusinska-Roszak and H. -G. Mack, “Hydrogen Bonding and Density Functional Calculations: The B3LYP Approach as the Shortest Way to MP2 Results,” Journal of Physical Chemistry A, Vol. 102, No. 17, 1998, pp. 2899-2903. doi:10.1021/jp973142x
[27] B. G. Oliveira, R. C. M. U. Araújo, A. B. Carvalho and M. N. Ramos, “A Theoretical Study about the Non-Linearity of the Hydrogen Bonding in the C2H4O-C2H2 and C2H4S-C2H2 Heterocyclic Systems,” Química Nova, Vol. 30, No. 5, 2007, pp. 1167-1170. doi:10.1590/S0100-40422007000500022
[28] J. Tirado-Rives and W. L. Jorgensen, “Performance of B3LYP Density Functional Methods for a Large Set of Organic Molecules,” Journal of Chemical Theory and Computation, Vol. 4, No. 2, 2008, pp. 297-306. doi:10.1021/ct700248k
[29] S. Kolboe and S. Svelle, “Does an Ethene/Benzenium Ion Complex Exist? A Discrepancy between B3LYP and MP2 Predictions,” Journal of Physical Chemistry A, Vol. 112, No. 29, 2008, pp. 6399-6400. doi:10.1021/jp8027879
[30] B. G. Oliveira, R. C. M. U. Araújo, A. B. Carvalho and M. N. Ramos, “The Molecular Properties of Heterocyclic and Homocyclic Hydrogen-Bonded Complexes Evaluated by DFT Calculations and AIM Densities,” J. Mol. Model., Vol. 15, No 2, 2009, pp. 123-131. doi:10.1007/s00894-008-0380-2
[31] B. G. Oliveira, R. C. M. U. Araújo, A. B. Carvalho and M. N. Ramos, “Small Heterocyclics as Hydrogen Bond Acceptors and Donors: the Case of the C2H3XS??? NH3 Complexes (X = H, F and CH3),” Journal of Structural Chemistry, Vol. 20, No. 4, 2009, pp. 663-670. doi:10.1007/s11224-009-9458-4
[32] R. F. W. Bader, “Atoms in Molecules. A Quantum Theory,” Oxford University Press, Oxford, 1990.
[33] P. L. A. Popelier, “Atoms in Molecules. An Introduction,” Prentice Hall, London, 2000.
[34] C. F. Matta and R. J. Boyd, “The Quantum Theory of Atoms in Molecules: From Solid State to DNA and Drug Design,” Wiley-VCH, Weinham, 2007.
[35] R. F. W. Bader, “Atoms in Molecules,” Acc. Chem. Res., Vol. 18, No. 1, 1985, pp. 9-15. doi:10.1021/ar00109a003
[36] R. F. W. Bader, “A Quantum Theory of Molecular Structure and Its Applications,” Chemical Reviews, Vol. 91, No. 5, 1991, pp. 893-928. doi:10.1021/cr00005a013
[37] R. F. W. Bader, P. J. MacDougall and C. D. H. Lau, “Bonded and Nonbonded Charge Concentrations and their Relation to Molecular Geometry and Reactivity,” Journal of the American Chemical Society, Vol. 106, No. 6, 1984, pp. 1594-1605. doi:10.1021/ja00318a009
[38] R. F. W. Bader and P. M. Beddall, “Virial Field Relationship for Molecular Charge Distributions and the Spatial Partitioning of Molecular Properties,” Journal of Chemical Physics, Vol. 56, No. 7, 1972, pp. 3320-3330. doi:10.1063/1.1677699
[39] D. Cremer and E. Kraka, “Theoretical Determination of Molecular Structure and Conformation. 15. Three- Membered Rings: Bent Bonds, Ring Strain, and Surface Deocalization,” Journal of the American Chemical Society, Vol. 107, No. 13, 1985, pp. 380-3810. doi:10.1021/ja00299a009
[40] D. Cremer and E. Kraka, “Theoretical Determination of Molecular Structure and Conformation. 16. Substituted Cyclopropanes―An Electron Density Model of Substituent―Ring Interactions,” Journal of the American Chemical Society, Vol. 107, No. 13, 1985, pp. 3811-3819. doi:10.1021/ja00299a010
[41] F. Biegler-K?nig, R. F. W. Bader and T. H. Tang, “Calculation of the Average Properties of Atoms in Molecules. II,” Journal of Computational Chemistry, Vol. 3, No., 1982, pp. 317-328.
[42] B. G. Oliveira, R. C. M. U. Araújo, A. B. Carvalho, E. F. Lima, W. L. V. Silva, M. N. Ramos and A. M. Tavares, “The Hydrogen Bond in the Acetylene-2(HF) Complex: A Theoretical Study about Intramolecular and Unusual π???H Interactions Using DFT and AIM Calculations,” Journal of Molecular Structure (THEOCHEM), Vol. 775, No. 1-3, 2006, pp. 39-45. doi:10.1016/j.theochem.2006.06.028
[43] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, N. Rega, P. Salvador, J. J. Dannenberg, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski,
[44] B. B. Stefanov and J. Cioslowski, “An Efficient Approach to Calculation of Zero-Flux Atomic Surfaces and Generation of Atomic Integration Data,” Journal of Computational Chemistry, Vol. 16, No. 11, 1995, pp. 1394-1404. doi:10.1002/jcc.540161108
[45] T. A. Keith, T. K. Gristmill Software, Overland Park KS, AIMAll (Version 11.05.16), 2011. http://aim.tkgristmill.com/
[46] F. B. van Duijneveldt and J. N. Murrell, “Some Calculations on the Hydrogen Bond,” Journal of Chemical Physics, Vol. 46, No. 5, 1967, pp. 1759-1768. doi:10.1063/1.1840932
[47] S. B. Boys and F. Bernardi, “The Calculation of Small Molecular Interaction by the Differences of Separate Total Energies: Some Procedures with Reduced Errors,” Molecular Physics, Vol. 19, No. 4, 1970, pp. 553-566. doi:10.1080/00268977000101561
[48] D. A. McQuarrie, “Statistical Thermodynamics,” Harper and Row, New York, 1973.
[49] R. S. Rowland and R. Taylor, “Intermolecular Nonbonded Contact Distances in Organic Crystal Structures: Comparison with Distances Expected from van der Waals Radii,” The Journal of Physical Chemistry, Vol. 100, No. 18, 1996, pp. 7384-7391. doi:10.1021/jp953141+
[50] V. M. Goldschmidt, “Geochemische Verteilungsgesetze der Elemente,” Skrifter Norske Videnskaps, Akad, Oslo, 1926.
[51] L. Pauling, “The Nature of the Chemical Bond,” 3rd Edition, Cornell University Press, Ithaca, 1960.
[52] B. G. Oliveira and L. F. C. C. Leite, “A Quantum Chemical Study of Red-Shift and Blue-Shift Hydrogen Bonds in Bimolecular and Trimolecular Methylhydrazine-Hydrate Complexes,” Journal of Molecular Structure (THEOCHEM), Vol. 915, No. 1-3, 2009, pp. 38-42. doi:10.1016/j.theochem.2009.08.011
[53] B. G. Oliveira, R. C. M. U. Araújo and M. N. Ramos, “A Theoretical Study of Blue-Shifting Hydrogen Bonds in π Weakly Bound Complexes,” Journal of Molecular Structure (THEOCHEM), Vol. 908, No. 1-3, 2009, pp. 79-83.
[54] B. G. Oliveira, M. C. A. Lima, I. R. Pitta, S. L. Galdino and M. Z. Hernandes, “A Theoretical Study of Red-Shifting and Blue-Shifting Hydrogen Bonds Occurring between Imidazolidine Derivatives and PEG/PVP Polymers,” Journal of Molecular Modeling, Vol. 16, No. 1, 2010, pp. 119-127. doi:10.1007/s00894-009-0525-y
[55] B. G. Oliveira, R. C. M. U. Araújo and M. N. Ramos, “The (H–δ???H+δ) Charge Transfer and the Evaluation of the Harmonic Molecular Properties of Dihydrogen-Bonded Complexes Formed by BeH2???HX with X = F, Cl, CN, and CCH,” Journal of Structural Chemistry, Vol. 19, No. 2, 2008, pp. 185-189. doi:10.1007/s11224-007-9269-4
[56] B. G. Oliveira, E. M. Duarte, R. C. M. U. Araújo, M. N. Ramos and A. B. Carvalho, “A Theoretical Study of Nonlinearity in Heterocyclic Hydrogen-Bonded Complexes,” Spectrochimica Acta Part A, Vol. 61, No. 3, 2005, pp. 491-494. doi:10.1016/j.saa.2004.04.023
[57] B. G. Oliveira, E. C. S. Santos, E. M. Duarte, R. C. M. U. Araújo, M. N. Ramos and A. B. Carvalho, “An MP2 and DFT Study of Heterocyclic Hydrogen Complexes CnHmY-HX with n = 2, m = 4 or 5, Y = O, S or N and X = F or Cl,” Spectrochimica Acta Part A, Vol. 60, No. 8-9, 2004, pp. 1883-1887. doi:10.1016/j.saa.2003.10.006
[58] R. C. M. U. Araújo, J. B. P. Silva and M. N. Ramos, “An ab Initio Study of Hydrogen Complexes of the X-H???π Type between Acetylene and HF or HCl,” Spectrochimica Acta Part A, Vol. 51, No. 5, 1995, pp. 821-830. doi:10.1016/0584-8539(94)00194-G
[59] R. C. M. U. Araújo and M. N. Ramos, “An ab Initio Study of the Molecular Properties of the Acetylene-HX Hydrogen Complexes,” Journal of Molecular Structure (THEOCHEM), Vol. 366, No. 3, 1996, pp. 233-240. doi:10.1016/0166-1280(96)04536-8
[60] E. B. A. Filho, E. Ventura, S. A. do Monte, B. G. Oliveira, C. G. L. Junior, G. B. Rocha and M. L. A. A. Vasconcellos, “Synthesis and Conformational Study of a New Class of Highly Bioactive Compounds,” Chemical Physics Letters, Vol. 449, No. 4-6, 2007, pp. 336-340. doi:10.1016/j.cplett.2007.10.080
[61] B. G. Oliveira, R. C. M. U. Araújo, F. S. Pereira, E. F. Lima, W. L. V. Silva, A. B. Carvalho and M. N. Ramos, “A Theoretical Study of Molecular Properties of C2H4???2HF, C2H2???2HF and C3H6???2HF Trimolecular Hydrogen-Bonded Complexes,” Química Nova, Vol. 31, No. 7, 2008, pp. 1673-1688. doi:10.1590/S0100-40422008000700014
[62] B. G. Oliveira, R. C. M. U. Araujo, A. B. Carvalho and M. N. Ramos, “An Energetic Quantification of Inter-Intramolecular Interactions in the C2H2-2HF and C2H4O-2HF Trimolecular Hydrogen Bonded Complexes: DFT Calculations and AIM Topological Parameters,” Chemical Physics Letters, Vol. 433, No. 4-6, 2007, pp. 390-394. doi:10.1016/j.cplett.2006.11.029
[63] B. G. Oliveira, M. L. A. A. Vasconcellos, R. R. Olinda and E. B. A. Filho, “Uncommon Hydrogen Bonds between a Non-Classical Ethyl Cation and π Hydrocarbons: A Preliminary Study,” Journal of Structural Chemistry, Vol. 20, No. 1, 2009, pp. 81-90. doi:10.1007/s11224-008-9401-0
[64] B. G. Oliveira and M. L. A. A. Vasconcellos, “Hydrogen Bonds in Alcohols: Water Complexes: A Theoretical Study about New Intramolecular Interactions via CHELPG and AIM Calculations,” Journal of Molecular Structure (THEOCHEM), Vol. 774, No. 1-3, 2006, pp. 83-88. doi:10.1016/j.theochem.2006.06.018
[65] B. G. Oliveira and R. C. M. U. Araújo, “Relationship between Charge Transfer and Intermolecular Interactions in Heterocyclic Hydrogen-Bonded Complexes,” Química Nova, Vol. 30, No. 4, 2007, pp. 791-796. doi:10.1590/S0100-40422007000400007
[66] E. Ramos-Cordoba, D. S. Lambrecht and M. Head-Gordon, “Charge-Transfer and the Hydrogen Bond: Spectroscopic and Structural Implications from Electronic Structure Calculations,” Faraday Discuss, 2011, Advance Article. DOI: 10.1039/C1FD00004G.
[67] P. L. A. Popelier, “On the Full Topology of the Laplacian of the Electron Density,” Coordination Chemistry Reviews, Vol. 197, No. 1, 2000, pp. 169-189. doi:10.1016/S0010-8545(99)00189-7
[68] R. F. W. Bader, J. Hernández-Trujillo and J. Cortés- Guzmán, “Chemical Bonding: From Lewis to Atoms in Molecules,” Journal of Computational Chemistry, Vol. 28, No. 1, 2006, pp. 4-14. doi:10.1002/jcc.20528
[69] S. J. Grabowski, T. L. Robinson and J. Leszczynski, “Strong Dihydrogen Bonds―ab Initio and Atoms in Molecules Study,” Chemical Physics Letters, Vol. 386, No. 1-3, 2006, pp. 44-48.
[70] B. G. Oliveira, F. S. Pereira, R. C. M. U. Araújo and M. N. Ramos, “The Hydrogen Bond Strength: New Proposals to Evaluate the Intermolecular Interaction Using DFT Calculations and the AIM Theory,” Chemical Physics Letters, Vol. 427, No. 1-3, 2006, pp. 181-184. doi:10.1016/j.cplett.2006.06.019

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.