Effect of Water Stress and Foliar Boron Application on Seed Protein, Oil, Fatty Acids, and Nitrogen Metabolism in Soybean

Abstract Full-Text HTML Download Download as PDF (Size:777KB) PP. 692-701
DOI: 10.4236/ajps.2011.25084    5,122 Downloads   10,231 Views   Citations
Author(s)    Leave a comment

ABSTRACT

Effects of water stress and foliar boron (FB) application on soybean (Glycine max (L) Merr.) seed composition and nitrogen metabolism have not been well investigated. Therefore, the objective of this study was to investigate the effects of water stress and FB on seed protein, oil, fatty acids, nitrate reductase activity (NRA), and nitrogenase activity (NA). A repeated greenhouse experiment was conducted where one set of soybean plants were subjected to water stress (WS), and the other set was watered (W). Foliar boron (B) was applied at rate of 0.45 kg·ha-1. Treatments were watered-plants with no FB (W), watered-plants with FB (WB), water-stress plants with no FB (WS), and water-stress plants with FB (WSB). The results showed that seed protein and oil percentage were significantly (P < 0.05) higher in WB than other treatments. Oleic acid increased and linolenic acid decreased in WB and WSB. Significant (P < 0.05) increase in NRA in leaves and roots and NA occurred in WB compared to W. In WSB, NRA in leaves and roots or nitrogenase activities were higher than those in WS. Nitrate reductase activity in nodules was greater in WB than in W, and was higher in WSB than in WS. The concentration of B in leaves and seed were significantly (P < 0.05) higher in W than in WS. Seed 15N/ 14N and 13C/12C natural abundance were altered between watered-and watered-stressed plants. These results suggest that water stress and FB can influence seed composition, and nitrogen metabolism, and 15N/14N and 13C/12C ratios, reflecting environmental and metabolic changes in carbon and nitrogen fixation pathways. Lack of B translocation from leaves to seed under water stress may suggest a possible mechanism of limited B translocation under water stress. These findings may be beneficial to breeders to select for B translocation efficiency under drought conditions. Altered 15N/14N and 13C/12C under water stress can be used as a tool to select for drought tolerance using N and C isotopes in the breeding programs.

Cite this paper

N. Bellaloui, "Effect of Water Stress and Foliar Boron Application on Seed Protein, Oil, Fatty Acids, and Nitrogen Metabolism in Soybean," American Journal of Plant Sciences, Vol. 2 No. 5, 2011, pp. 692-701. doi: 10.4236/ajps.2011.25084.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] R. F. Wilson, “Seed composition,” In: H. Boerma and J. E. Specht, Eds., Soybeans: Improvement, production, and uses, 3rd Edition, ASA, CSSA, and SSSA, Madison, 2004, pp. 621-668.
[2] J. H. Cherry, L. Bishop, P. M. Hasegawa and H. R. Lef- fler, “Differences in the Fatty Acid Composition of Soy- Bean Seed Produced in Northern and Southern Areas of the USA,” Phytochemistry, Vol. 24, No. 2, 1985, pp. 237-241. doi:10.1016/S0031-9422(00)83527-X
[3] S. R. Schnebly and W. R. Fehr, “Effect of Years and Planting Dates on Fatty Acid Composition of Soybean Genotypes,” Crop Science, Vol. 33, No. 4, 1993, pp. 716-719. doi:10.2135/cropsci1993.0011183X003300040016x
[4] G. Rakow and D. I. McGregor, “Opportunities and Prop- Blems in Modification of Levels of Rapeseed C18 Unsaturated Fatty Acid,” Journal of the American Oil Chemists’ Society, Vol. 50, 1973, pp. 400-403.
[5] S. M. Rahman, T. Kinoshita, T. Anai and Y. Takagi, “Combining Ability in Loci for High Oleic and Low Linolenic Acids in Soybean,” Crop Science, Vol. 41, No. 1, 2001, pp. 26-29. doi:10.2135/cropsci2001.41126x
[6] D. J. Pilbeam and E. A. Kirkby, “The Physiological Role of Boron in Plants,” Journal of Plant Nutrition, 1983, Vol. 6, No. 7, pp. 563-582. doi:10.1080/01904168309363126
[7] H. Marschner, “Mineral Nutrition of Higher Plants,” 2nd Edition, Academic Press, San Diego, 1995, pp. 379-396.
[8] P. H. Brown, N. Bellaloui, H. Hu and A. Dandekar, “Transgenically Enhanced Sorbitol Synthesis Facilitates Phloem Boron Transport and Increases Tolerance of To- bacco to Boron Deficiency,” Plant Physiology, Vol. 119, No. 1, 1999, pp. 17-20. doi:10.1104/pp.119.1.17
[9] W. E. Brenchley and H. G. Thornton, “The Relation be- tween the Development, Structure and Functioning of the Nodules on Vicia faba, as Influenced by the Presence or Absence of Boron in the Nutrient Medium,” Proceedings of the Royal Society B Biological Sciences, Vol. 98, No. 691, 1925, pp. 373-398. doi:10.1098/rspb.1925.0043
[10] L. Bolafios, N. J. Brewin and I. Bonilla, “Effects of Boron on Rhizobium-Legume Cell-Surface Interactions and Node Development,” Plant Physiology, Vol. 11, 1996, pp. 1249-1256.
[11] L. Bolafios, E. Esteban, C. de Lorenzo, M. Fernández- Pascual, M. R. de Felipe, A. Gbrate and I. Bonilla, “Es- sentiality of Boron for Symbiotic Dinitrogen Fixation in Pea (Pisum sativum) Rhizobium Nodules,” Plant Physio- logy, Vol. 104, 1994, pp. 85-90.
[12] Y. Kanayama, K. Kimura, Y. Nakamura and T. Ike, “Pu- rification and Characterization of Nitrate Reductase from Nodule Cytosol of Soybean Plants,” Physiologia Planta- rum, Vol. 105, No. 3, 1999, pp. 396-401. doi:10.1034/j.1399-3054.1999.105302.x
[13] J. M. Caba, C. Lluch and F. Ligero, “Distribution of Nitrate Reductase Activity in Vicia faba: Effect of Nitrate and Plant Genotype,” Physiologia Plantarum, Vol. 93, No. 4, 1995, pp. 667-672. doi:10.1111/j.1399-3054.1995.tb05115.x
[14] P. H. Brown, N. Bellaloui, M. A. Wimmer, E. S. Bassil, J. Ruiz, H. Hu, H. Pfeffer, F. Dannel and V. Romheld, “Boron in Plant Biology,” Plant Biology, Vol. 4, No. 2, 2002, pp. 205-223. doi:10.1055/s-2002-25740
[15] B. Dell, L. Huang and R. W. Bell, “Boron in Plant Repro- duction,” In: H. E. Goldbach, B. Rerkasem, M. A. Wim- mer, P. H. Brown, M. Thellier and R. W. Bell, Eds., Boron in Plant and Animal Nutrition, Kluwer Academic/ Pledum Publication, New York, 2002, pp. 103- 117.
[16] C. Dordas, “Foliar Boron Application Improves Seed Set, Seed Yield, and Seed Quality of Alfalfa,” Agronomy Journal, Vol. 98, No. 4, 2006, pp. 907-913. doi:10.2134/agronj2005.0353
[17] N. Bellaloui, K. N. Reddy, A. M. Gillen and C. A. Abel, “Nitrogen Metabolism and Seed Composition as Influenced by Foliar Boron Application in Soybean,” Plant and Soil, Vol. 336, No. 1-2, 2010, pp. 143-155. doi:10.1007/s11104-010-0455-6
[18] A. Asad, F. P. C. Blamey and D. G. Edwards, “Effects of Boron Foliar Applications on Vegetative and Reprodu- ctive Growth of Sunflower,” Annals of Botany, Vol. 92, No. 4, 2003, pp. 565-570. doi:10.1093/aob/mcg179
[19] L. L. Handley and J. A. Raven, “The Use of Natural Abundance of Nitrogen Isotopes in Plant Physiology and Ecology,” Plant Cell and Environment, Vol. 15, No. 9, 1992, pp. 965-985. doi:10.1111/j.1365-3040.1992.tb01650.x
[20] M. H. O’Leary, “Environmental Effects on Carbon Isotope Fractionation in Terrestrial Plants,” In: E. Wada, T. Yoneyama, M. Minagawa, T. Ando and B. D. Fry, Eds., Stable Isotopes in the Biosphere, Kyoto University Press, Kyoto, 1995, pp. 517-530.
[21] T. Yoneyama, L. L. Handley, C. M. Schrimgeour, D. B. Fisher and J. A. Raven, “Variations of the Natural Abun- Dances of Nitrogen and Carbon Isotopes in Triticum aes- tivum with Special Reference to Phloem and Xylem Exu- dates,” New Phytologist, Vol. 137, No. 2, 1997, pp. 205-213. doi:10.1046/j.1469-8137.1997.00809.x
[22] W. R. Fehr, C. E. Caviness, D. T. Burmood and J. S. Pennington, “Stage of Development Descriptions for Soybeans, Glycine max (L.) Merr.,” Crop Science, Vol. 11, No. 6, 1971, pp. 929-931. doi:10.2135/cropsci1971.0011183X001100060051x
[23] L. Klepper and R. H. Hageman, “The Occurrence of Ni- Trate Reductase in Apple Leaves,” Plant Physiology, Vol. 44, No. 1, 1969, pp. 110-114. doi:10.1104/pp.44.1.110
[24] N. Bellaloui, K. N. Reddy, R. M. Zablotowicz and A. Mengistu, “Simulated Glyphosate Drift Influences Nitrate Assimilation and Nitrogen Fixation in Non-Glyphosate- Resistant Soybean,” Journal of Agriculture and Food Chemistry, Vol. 54, No. 9, 2006, pp. 3357-3364. doi:10.1021/jf053198l
[25] R. W. F. Hardy, D. Holsten, E. K. Jackson and R. C. Burns, “The Acetylene-Ethylene Assay for Nitrogen Fixation: Laboratory and Field Evaluation,” Plant Physiology, Vol. 43, No. 8, 1968, pp. 1185-1207. doi:10.1104/pp.43.8.1185
[26] R. M. Zablotowicz, D. D. Focht and G. H. Cannell, “Nodulation and N Fixation of Field Grown California Cowpeas as Influenced by Irrigated and Droughted Con- ditions,” Agronomy Journal, Vol. 73, No. 1, 1981, pp. 9-12. doi:10.2134/agronj1981.00021962007300010003x
[27] G. Lohse, “Microanalytical Azomethine-H Method for Boron Determination in Plant Tissue,” Communications in Soil Science and Plant Analysis, Vol. 13, No. 2, 1982, pp. 127-134. doi:10.1080/00103628209367251
[28] M. K. John, H. H. Chuah and J. H. Neufeld, “Application of Improved Azomethine-H Method to the Determination of Boron in Soils and Plants,” Analytical Letters, Vol. 8, No. 8, 1975, pp. 559-568. doi:10.1080/00032717508058240
[29] N. Bellaloui and A. Mengistu, “Seed composition Is In- Fluenced by Irrigation Regimes and Cultivar Differences in Soybean,” Irrigation Science, Vol. 26, No. 3, 2008, pp. 261-268. doi:10.1007/s00271-007-0091-y
[30] N. Bellaloui, A. Mengistu and R. L. Paris, “Soybean Seed Composition in Cultivars Differing in Resistance to Char- coal Rot (Macrophomina phaseolina),” Journal of Agri- cultural Science, Vol. 146, No. 6, 2008, pp. 667-675. doi:10.1017/S0021859608007971
[31] J. R. Wilcox and R. M. Shibles, “Interrelationships among Seed Quality Attributes in Soybean,” Crop Science, Vol. 41, No. 1, 2001, pp. 11-14. doi:10.2135/cropsci2001.41111x
[32] AOAC a. Method 988.05, K. Helrich, Ed., “Official Methods of Analysis,” 15th Edition, The Association of Official Analytical Chemists, Inc., 1990a, Arlington.
[33] AOAC b. Method 920.39, K. Helrich, Ed., “Official Methods of Analysis,” 15th Edition, The Association of Official Analytical Chemists, Inc., 1990b, Arlington.
[34] E. Boydak, M. Alpaslan, M. Hayta, S. Gercek and M. Simsek, “Seed Composition of Soybeans Grown in the Harran Region of Turkey as Affected by Row Spacing and Irrigation,” Journal of Agricultural and Food Chemi- stry, Vol. 50, No. 16, 2002, pp. 4718-4720. doi:10.1021/jf0255331
[35] SAS, “SAS 9.1 TS LeVel 1M3, Windows Version 5.1.2600, SAS Institute,” Cary, 2001.
[36] M. K. Schon and D. G. Blevins, “Foliar Boron Applica- tions Increase the Final Number of Branches and Pods on Branches of Field-Grown Soybeans,” Plant Physiology, Vol. 92, 1990, pp. 602-607. doi:10.1104/pp.92.3.602
[37] T. M. Reinbott and D. G. Blevins, “Response of Soybean to Foliar-Applied Boron and Magnesium and Soil-Ap- plied Boron,” Journal of Plant Nutrition, Vol. 18, No. 1, 1995, pp. 179-200. doi:10.1080/01904169509364894
[38] B. Rerkasem, R. W. Bell, S. Lodkaew and J. F. Lonergan, “Relationship of Seed Boron Concentration to Germina- tion and Growth of Soybean,” Nutrient Cycling in Agroecosystems, Vol. 48, No. 3, 1997, pp. 217-223. doi:10.1023/A:1009725311624
[39] J. R. Ross, N. A. Slaton, K. R. Brye and R. E. DeLong, “Boron Fertilization Influences on Soybean Yield and Leaf and Seed Boron Concentrations,” Agronomy Journal, Vol. 98, No. 1, 2006, pp. 198-205. doi:10.2134/agronj2005-0131
[40] L. Bolanos, N. J. Brewin and I. Bonilla, “Effects of Boron on Rhizobium-Legume Cell-Surface Interactions and Node Development,” Plant Physiology, Vol. 110, 1996, pp. 1249-1256.
[41] H. A. Mills and J. B. Jr. Jones, “Plant Analysis Handbook II,” Micromacro Publisher, Athens, 1996.
[42] H. Hu and P. H. Brown, “Localization of Boron in Cell Walls of Squash and Tobacco and Its Association with Pectin. Evidence for a Structural Role of Boron in the Cell Wall,” Plant Physiology, Vol. 105, 1994, pp. 681- 689.
[43] H. Goldbach, “Influence of Boron Nutrition on Net Uptake and Efflux of 32P and 14C Glucose in Helianthus Annus Roots and Cell Cultures of Daucus carota,” Journal of Plant Physiology, Vol. 118, 1985, pp. 431-438.
[44] J. J. Camacho-Cristóbal and A. González-Fontes, “Boron Deficiency Decreases Plasmalemma H+-Atpase Expre- ssion and Nitrate Uptake, and Promotes Ammonium As- similation into Asparagine in Tobacco Roots,” Planta, Vol. 226, No. 2, 2007, pp. 443-451. doi:10.1007/s00425-007-0494-2
[45] J. J. Camacho-Crist′obal, J. Rexach and A. Gonz′alez- Fontes, “Boron in Plants: Deficiency and Toxicity,” Jour- nal of Integrative Plant Biology, Vol. 50, No. 10, 2008, pp.1247-1255. doi:10.1111/j.1744-7909.2008.00742.x
[46] M. H. O’Leary, I. Treichel and M. Rooney, “Short-Term Measurement of Carbon Isotope Fractionation in Plants,” Plant Physiology, Vol. 80, No. 2, 1986, pp. 578-582. doi:10.1104/pp.80.2.578
[47] K. S. Kumarashinghe, C. Kirda, M. Arag, F. Zapata and K. S. A. Danso, “13C Isotope Discrimination Correlated with Biological Nitrogen Fixation in Soybean (Glycine max L.) Merrill),” Plant and Soil, Vol. 139, No. 1, 1992, pp. 145-147. doi:10.1007/BF00012852
[48] P. H?gberg, “15N Natural Abundance as a Possible Marker of the Ectomycorrhizal Habit of Trees in Mixed African Wood Land,” New Phytologist, Vol. 115, No. 3, 1990, pp. 483-486. doi:10.1111/j.1469-8137.1990.tb00474.x
[49] G. D. Farquhar and R. A. Richards, “Isotopic Composi- tion of Plant Carbon Correlates with Water-Use Efficiency of Wheat Genotypes,” Australian Journal of Plant Physiology, Vol. 11, No. 6, 1984, pp. 539-552. doi:10.1071/PP9840539
[50] M. N. Fotelli, H. Rennenberg, T. Holst, H. Mayer and A. Ge?ler, “Carbon Isotope Composition of Various Tissues of Beech (Fagus sylvatica) Regeneration Is Indicative of Recent Environmental Conditions within the Forest Un- derstory,” New Phytologist, Vol. 159, No. 1, 2003, pp. 229-244. doi:10.1046/j.1469-8137.2003.00782.x
[51] A. Kume, T. Satomura, N. Tsuboi, M. Chiwa, Y. T. Hanba, K. Nakane, T. Horikoshi and H. Sakugawa, “Ef- fects of Understory Vegetation on the Ecophysiological Characteristics of an Overstory Pine, Pinus Densiflora,” Forest Ecology and Management, Vol. 176, No. 1-3, 2003, pp. 195-203. doi:10.1016/S0378-1127(02)00282-7
[52] D. Robinson1, L. L. Handley, C. M. Scrimgeour, D. C. Gordon, B. P. Forster and R. P. Ellis, “Using Stable Iso- tope Natural Abundances (δ15N and δ13C) to Integrate the Stress Responses of Wild Barley (Hordeum spontaneum C. Koch.) Genotypes,” Journal of Experimental Botany, Vol. 51, No. 342, 2000, pp. 41-50. doi:10.1093/jexbot/51.342.41
[53] I. Bonilla, C. Mergold-Villasenor, M. E. Campos, N. Sanchez, H. Perez, I. Lopez , L. Castrejon, F. Sanchez and G. I. Cassab, “The Aberrant Cell Walls of Bo- ron-Deficient Bean Root Nodules Have No Covalently Bound Hydroxyproline-/Proline-Rich Protein,” Plant Physiology, Vol. 115, No. 4, 1997, pp. 1329-1340. doi:10.1104/pp.115.4.1329
[54] B. J. Shelp, “Physiology and Biochemistry of Boron in Plants,” In: U. C. Gupta, Ed., Boron and Its Role in Crop Production, CRC Press, Boca Raton, 1993, pp. 53-85.
[55] J. W. Burton, “Breeding Soybeans for Improved Protein Quantity and Quality,” In: R. Shibles, Ed., 3rd Procee- dings World Soybean Research Conference, Ames, Westview Press, Boulder, 1985, pp. 361-367.
[56] N. Bellaloui, J. E. Hanks, D. K. Fisher and A. Mengistu, “Soybean Seed Composition Is Influenced by Within- Field Variability in Soil Nutrients,” Crop Management, 2009a.
[57] N. Bellaloui, H. K. Abbas, A. M. Gillen and C. A. Abel, “Effect of Glyphosate-Boron Application on Seed Com- position and Nitrogen Metabolism in Glyphosate-Resi- stant Soybean,” Journal of Agriculture and Food Chemistry, Vol. 57, No. 19, 2009b, pp. 9050-9056. doi:10.1021/jf901801z

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.