2D Analytical Model for Direct Ethanol Fuel Cell Performance Prediction
Saeed Heysiattalab, Mohsen Shakeri
DOI: 10.4236/sgre.2011.24049   PDF    HTML   XML   7,387 Downloads   12,245 Views   Citations


Analytical models provide useful information for researchers to study fuel cell function. In this paper, it’s aimed to present a 2D analytical model for direct ethanol fuel cell (DEFC) performance. The model included equations inside diffusion layer, catalyst layer, and Ethanol cross-over through membrane, which all have been solved. Analytical model has been validated by some experimental trials. The results showed that there is proper agreement between experimental and analytical curves. Furthermore, by increasing current density, cathodic over potential will remain zero but anodic over potential will increase up to certain value. The model showed that Ethanol concentration changes almost linearly inside anode channel.

Share and Cite:

S. Heysiattalab and M. Shakeri, "2D Analytical Model for Direct Ethanol Fuel Cell Performance Prediction," Smart Grid and Renewable Energy, Vol. 2 No. 4, 2011, pp. 427-433. doi: 10.4236/sgre.2011.24049.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] T. Pichonat and B. Gauthier-Manuel, “Recent Developments in MEMS-Based Miniature Fuel Cells,” Microsyst Technol, Vol. 13, No. 11-12, 2007, pp. 1671-1678. doi:10.1007/s00542-006-0342-5
[2] A. Casalegno and R. Marchesi, “DMFC Performance and Methanol Cross-Over: Experimental Analysis and Model Validation,” Journal of Power Source, Vol. 185, No. 1, 2008, pp. 318-330. doi:1016/j.jpowsour.2008.06.071
[3] N. Fujiwara, Sh. Yamazaki, Z. Siroma, T. Ioroi and K. Yasuda, “L-Ascorbic Acid as an Alternative Fuel for Direct Oxidation Fuel Cells,” Journal of Power Sources, Vol. 167, No. 1, 2007, pp. 32-38. doi:10.1016/j.jpowsour.2007.02.023
[4] N. Fujiwara, Z. Siroma, Sh. Yamazaki, T. Ioroi, H. Senoh and K. Yasuda, “Direct Ethanol Fuel Cells Using an Anion Exchange Membrane,” Journal of Power Sources. Vol. 185, No. 2, 2008, pp. 621-626. doi:10.1016/j.jpowsour.2008.09.024
[5] Sh. Song and P. Tsiakarasc, “Recent Progress in Direct Ethanol Proton Exchange Membrane Fuel Cells (DE-PEMFCs),” Applied Catalysis B: Environmental, Vol. 63, No. 3-4, 2006. pp. 187-193. doi:10.1016/j.apcatb.2005.09.018
[6] E. Antolini, “Catalysts for Direct Ethanol Fuel Cells,” Journal of Power Sources, Vol. 170, No. 1, 2007, pp. 1-12. doi:10.1016/j.jpowsour.2007.04.009
[7] E. H. Hou, G. Suna, R. Heb, Zh. Wu and B. Sunb, “Alkali Doped Polybenzimidazole Membrane for High Performance Alkaline Direct Ethanol Fuel Cell,” International Journal of Hydrogen Energy, Vol. 33, No. 1, 2008, pp. 7172-7176. doi:10.1016/j.jpowsour.2008.04.010
[8] G. M. Andreadis, A. K. M. Podias and P. E. Tsiakaras, “The Effect of the Parasitic Current on the Direct Ethanol PEM Fuel Cell Operation,” Journal of Power Sources Vol. 181, No. 2, 2008, pp. 214-227. doi:10.1016/j.jpowsour.2008.01.060
[9] W. J. Zhou, S. Q. Song, W. Z. Li, Z. H. Zhou, G. Q. Sun, Q. Xin, S. Douvartzides and P. Tsiakaras, “Direct Ethanol Fuel Cells Based on Pt/Sn Anodes: The Effect of Sn Content on the Fuel Cell Performance,” Journal of Power Source, Vol. 140, No. 1, 2005, pp. 50-58. doi:10.1016/j.jpowsour.2004.08.003
[10] K. Scott, W. M. Taama, S. Kramer, P. Argyropoulos and K. Sundmacher, “Limiting Current Behaviour of the Direct Methanol Fuel Cell,” Electrochimica Acta, Vol. 45, No. 6, 1999, pp. 945-957. doi:10.1016/S0013-4686(99)00285-6
[11] K. Scott, W. Taama and J. Cruickshank, “Performance and Modelling of a Direct Methanol Solid Polymer Electrolyte Fuel Cell,” Journal of Power Sources, Vol. 65, No. 1-2, 1997, pp.159-171. doi:10.1016/S0378-7753(97)02485-3
[12] S. Kato, K. Nagahama and H. Asai, “Permeation Rates of Aqueous Alcohol Solutions in Pervaporation through Nafion Membranes,” Journal of Membrance Science, Vol. 72, No. 1, 1992, pp. 31-41. doi:10.1016/0376-7388(92)80054-N
[13] G. Andreadis and P. Tsiakaras, “Ethanol Crossover and Direct Ethanol PEM Fuel Cell Performance Modeling and Experimental Validation,” Chemical Engineering Science, Vol. 61, No. 22, 2006, pp. 7497-7508. doi:10.1016/j.ces.2006.08.028
[14] G. Andreadis, S. Song and P. Tsiakaras, “Direct Ethanol Fuel Cell Anode Simulation Model,” Journal of Power Sources, Vol. 157, No. 2-3, 2006, pp. 657-665. doi:10.1016/j.jpowsour.2005.12.040
[15] F. Vigier, C. Coutanceau, A. Perrard, E. M. Belgsir and C. Lamy, “Developments of Anode Catalysts for a Direct Ethanol Fuel Cell,” Journal of Applied Electrochemistry, Vol. 34, No. 4, 2004, pp. 439-446. doi:10.1023/B:JACH.0000016629.98535.ad
[16] X. Ren, W. Henderson and S. Gottesfeld, “Electro-Osmotic Drag of Water in Ionomeric Membranes,” Jouranl of Electrochemical Science, Vol. 144, No. 9, 1997, pp. L267-L270. doi:10.1149/1.1837940
[17] Z. H. Wang and C. Y. Wang, “Mathematical Modeling of Liquid-Feed Direct Methanol Fuel Cells,” Journal of Electrochemical Socience, Vol. 150, No. 4, 2003, pp. A508-A519. doi:10.1149/1.1559061
[18] R. O’Hayre, S. Cha, Wh. Colella and F. B. Prinz, “Fuel Cell Fundamentals,” Wiley, New York, 2005.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.