Cu/CNF Nanocomposite Processed By Novel Salt Decomposition Method
C. Vincent, J. M. Heintz, J. F. Silvain, N. Chandra
DOI: 10.4236/ojcm.2011.11001   PDF   HTML     4,646 Downloads   9,176 Views   Citations


Thermal dissipation in power electronic devices can be improved through the elaboration of a new generation of layered heat sinks based on copper (Cu) -carbon nanofibers (CNF) composites. Though the high theoretical thermal conductivity of CNF (1200 W/m.K) no Cu-CNF composites with enhanced thermal properties are available. Indeed conventional compositing processes do not allow neither a good dispersion of the nano-reinforcements nor a control of the nanofiber-matrix interface which is not suitable for efficient heat transfers. In this paper, a process based on CNF coating with Cu followed by uniaxial hot pressing in described. It is shown that under proper experimental conditions the salt decomposition coating method is capable of achieving the desired high thermal conductivity values (> 400 W/m.K) thanks to a good dispersion of the CNF, low porosity content and the control of Cu-CNF interfaces.

Share and Cite:

Vincent, C. , Heintz, J. , Silvain, J. and Chandra, N. (2011) Cu/CNF Nanocomposite Processed By Novel Salt Decomposition Method. Open Journal of Composite Materials, 1, 1-9. doi: 10.4236/ojcm.2011.11001.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] G.Korb, W.Buchgrader, T.Schubert, Thermophysical properties and microstructure of short carbon fibre reinforced Cu-matrix composites made by electroless copper coating or powder metallurgical route respectively, IEEE/CPMT Berlin, Int’l Electronics Manufacturing Technology Symposium, 1998.
[2] J.F. Silvain, Y. Le Petitcorps, E. Sellier; Elastic moduli, thermal expansion and microstructure of copper-matrix composite reinforced by continuous graphite fibres, Composites, vol. 25, n°7, 1994, pp.570-574.
[3] J.F. Silvain, J. Soccart, Structural and thermal properties of hot pressed Cu/C matrix composite materials used for thermal management of high power electronic devices Mat. Sci. Forum, vol. 534-536, 2007, pp.1505-1508.
[4] E. Flahaut, A. Peigney, Ch. Laurent, Ch. Marlière, F. Chastel, A. Rousset, Carbon nanotube-metal-oxide nanocomposites : microstructure, electrical conductivity and mechanical properties, Acta Mater., vol. 48, 2000, pp. 3803-3812.
[5] K. Praksan, S. Palaniappan, and S. Seshan, Thermal expansion characteristics of cast Cu based metal matrix composites, Comp. Part A, vol. 28, 1997, pp.1019-1022.
[6] J. Koráb, P. Stefánik, S. Kavecky, P. Sebo, G. Korb, Thermal expansion of cross-ply and woven carbon fibre-copper matrix composites, Comp. Part A, vol. 33, 2002, pp. 133-136.
[7] J.F. Silvain, P; Richard, J. Douin, M. Lahaye, J. M. Heintz, Electroless coating process of carbon nano fibers by copper metal, Mat. Sci. Forum, Vol. 534-536, 2007, pp. 1145-1148.
[8] J. F. Silvain, C. Vincent, J.M. Heintz, N. Chandra, Novel processing and characterization of Cu/CNF nanocomposite for high thermal conductivity applications, Composite Science and Technology, Vol. 69, n°14, 2009, pp. 2474-2484.
[9] K. T. Kim, J. Eckert, G. Liu, J. M. Park, B. K. Lim, Soon H. Hong, Script. Mat., Vol. 64, n°2, 2011, pp.181-184.
[10] A.Degiovanni; Article des Techniques de l’Ingénieur; Conductivité et diffusivité thermique des solides, R 2 850, 1994, pp.3-15.
[11] B.Hay, J.R.Filtz, J.C.Batsale ; Article des Techniques de l’Ingénieur ; Mesure de la diffusivité thermique par la méthode flash, R 2 955, 2004, pp. 1-12.
[12] C. Vincent, Le composite cuivre-nanofibres de carbone, phD thesis of the University of Bordeaux I, 2008
[13] I. V. Morozov, K. O. Znamenkov, Yu. M. Korenev and O. A. Shlyakhtin, Thermal decomposition of Cu(NO3)2.3H2O at reduced pressures, Thermo. Acta, Vol. 403, 2003, pp.173-179.
[14] I.S.Kim, S.K.Lee, Fabrication of carbon nanofiber/Cu composite powder by electroless plating and microstructural evolution during thermal exposure , Script. Mat., Vol. 52, 2005, pp. 1045-1049.
[15] O. A. Yeshchenko et al., Size-dependent melting of spherical copper nanoparticles embedded in a silica matrix, Phys. Rev. B; Vol. 75, 085434.1-085434.6, 2007

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.