A Note on the Inclusion Sets for Tensors

In this paper, we give a note on the eigenvalue localization sets for tensors. We show that these sets are tighter than those provided by Li et al. (2014) .

KEYWORDS

Cite this paper

He, J. , Liu, Y. , Tian, J. and Liu, X. (2017) A Note on the Inclusion Sets for Tensors. Advances in Linear Algebra & Matrix Theory, 7, 67-71. doi: 10.4236/alamt.2017.73006.

1. Introduction

Eigenvalue problems of higher order tensors have become an important topic of study in a new applied mathematics branch, numerical multilinear algebra, and they have a wide range of practical applications  -  .

First, we recall some definitions on tensors. Let $ℝ$ be the real field. An m-th order n dimensional square tensor $A$ consists of nm entries in $ℝ$ , which is defined as follows:

$A=\left({a}_{{i}_{1}{i}_{2}\cdots {i}_{m}}\right),\text{\hspace{0.17em}}\text{\hspace{0.17em}}{a}_{{i}_{1}{i}_{2}\cdots {i}_{m}}\in ℝ,\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}1\le {i}_{1},{i}_{2},\cdots {i}_{m}\le n.$

To an n-vector x, real or complex, we define the n-vector:

$A{x}^{m-1}={\left(\underset{{i}_{2},\cdots ,{i}_{m}=1}{\overset{n}{\sum }}{a}_{i{i}_{2}\cdots {i}_{m}}{x}_{{i}_{2}}\cdots {x}_{{i}_{m}}\right)}_{1\le i\le n}.$

and

${x}^{\left[m-1\right]}={\left({x}_{i}^{m-1}\right)}_{1\le i\le n}.$

If $A{x}^{m-1}=\lambda {x}^{\left[m-1\right]}$ , x and $\lambda$ are all real, then $\lambda$ is called an H-eigenvalue of $A$ and x an H-eigenvector of $A$ associated with $\lambda$   .

Qi  generalized Geršgorin eigenvalue inclusion theorem from matrices to real supersymmetric tensors, which can be easily extended to generic tensors; see  .

Theorem 1. Let $A=\left({a}_{{i}_{1}{i}_{2}\cdots {i}_{m}}\right)$ be a complex tensor of order $m$ dimension $n$ . Then

$\sigma \left(A\right)\subseteq \Gamma \left(A\right)=\underset{i\in N}{\cup }\text{ }{\Gamma }_{i}\left(A\right)$

where $\tau \left(A\right)$ is the set of all the eigenvalues of $A$ and

${\Gamma }_{i}\left(A\right)=\left\{z\in ℂ:|z-{a}_{i\cdots i}|\le {r}_{i}\left(A\right)\right\},$

where

${\delta }_{{i}_{1}\cdots {i}_{m}}=\left\{\begin{array}{l}1,\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{if}\text{\hspace{0.17em}}{i}_{1}=\cdots ={i}_{m}\\ 0,\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{otherwise},\end{array}$

and

${r}_{i}\left(A\right)=\underset{{\delta }_{i{i}_{2}\cdots {i}_{m}}=0}{\sum }|{a}_{i{i}_{2}\cdots {i}_{m}}|.$

Recently, Li et al.  obtained the following result, which is also used to identify the positive definiteness of an even-order real supersymmetric tensor.

Theorem 2. Let $A=\left({a}_{{i}_{1}{i}_{2}\cdots {i}_{m}}\right)$ be a complex tensor of order $m$ dimension $n$ . Then

$\sigma \left(A\right)\subseteq K\left(A\right)=\underset{i,j\in N,i\ne j}{\cup }{K}_{i,j}\left(A\right)$

where $\sigma \left(A\right)$ is the set of all the eigenvalues of $A$ and

${K}_{i,j}\left(A\right)=\left\{z\in ℂ:\left(|z-{a}_{i\cdots i}|-{r}_{i}^{j}\left(A\right)\right)|z-{a}_{j\cdots j}|\le |{a}_{ij\dots j}|{r}_{j}\left(A\right)\right\},$

where

${r}_{i}^{j}\left(A\right)=\underset{\begin{array}{l}{\delta }_{i{i}_{2}\cdots {i}_{m}}=0,\\ {\delta }_{j{i}_{2}\cdots {i}_{m}}=0\end{array}}{\sum }|{a}_{i{i}_{2}\cdots {i}_{m}}|={r}_{i}\left(A\right)-|{a}_{ij\cdots j}|.$

In this paper, we give some new eigenvalue localization sets for tensors, which are tighter than those provided by Li et al.  .

2. New Eigenvalue Inclusion Sets

Theorem 3. Let $A=\left({a}_{{i}_{1}{i}_{2}\cdots {i}_{m}}\right)$ be a complex tensor of order $m$ dimension $n$ . Then

$\sigma \left(A\right)\subseteq \Delta \left(A\right)=\underset{i\in N}{\cap }\underset{j\in N,j\ne i}{\cup }{\Delta }_{i,j}\left(A\right)$

where $\sigma \left(A\right)$ is the set of all the eigenvalues of $A$ and

${\Delta }_{i,j}\left(A\right)=\left\{z\in ℂ:|z-{a}_{i\cdots i}|\left(|z-{a}_{j\cdots j}|-{r}_{j}^{i}\left(A\right)\right)\le |{a}_{ji\cdots i}|{r}_{i}\left(A\right)\right\},$

where

${r}_{j}^{i}\left(A\right)=\underset{\begin{array}{l}{\delta }_{j{i}_{2}\cdots {i}_{m}}=0,\\ {\delta }_{i{i}_{2}\cdots {i}_{m}}=0\end{array}}{\sum }|{a}_{j{i}_{2}\cdots {i}_{m}}|={r}_{j}\left(A\right)-|{a}_{ji\cdots i}|.$

Proof. Let $x={\left({x}_{1},\cdots ,{x}_{n}\right)}^{\text{T}}$ be an eigenvector of $A$ corresponding to $\lambda \left(A\right)$ , that is,

$A{x}^{m-1}=\lambda {x}^{\left[m-1\right]}.$ (1)

Let

$|{x}_{p}|=max\left\{|{x}_{i}|,i\in N\right\}.$

Obviously, $|{x}_{p}|>0$ . For any $q\ne p$ , from equality (1), we have

$\begin{array}{c}|\lambda -{a}_{p\cdots p}|{|{x}_{p}|}^{m-1}\le \underset{{\delta }_{p{i}_{2}\cdots {i}_{m}}=0}{\sum }|{a}_{p{i}_{2}\cdots {i}_{m}}||{x}_{{i}_{2}}|\cdots |{x}_{{i}_{m}}|\\ \le \underset{\begin{array}{l}{\delta }_{q{i}_{2}\cdots {i}_{m}}=0,\\ {\delta }_{p{i}_{2}\cdots {i}_{m}}=0\end{array}}{\sum }|{a}_{p{i}_{2}\cdots {i}_{m}}||{x}_{{i}_{2}}|\cdots |{x}_{{i}_{m}}|+|{a}_{pq\cdots q}|{|{x}_{q}|}^{m-1}\\ \le \underset{\begin{array}{l}{\delta }_{q{i}_{2}\cdots {i}_{m}}=0,\\ {\delta }_{p{i}_{2}\cdots {i}_{m}}=0\end{array}}{\sum }|{a}_{p{i}_{2}\cdots {i}_{m}}|{|{x}_{p}|}^{m-1}+|{a}_{pq\cdots q}|{|{x}_{q}|}^{m-1}\\ \le {r}_{p}^{q}\left(A\right){|{x}_{p}|}^{m-1}+|{a}_{pq\cdots q}|{|{x}_{q}|}^{m-1}.\end{array}$ (2)

That is,

$\left(|\lambda -{a}_{p\cdots p}|-{r}_{p}^{q}\left(A\right)\right){|{x}_{p}|}^{m-1}\le |{a}_{pq\cdots q}|{|{x}_{q}|}^{m-1}.$ (3)

If $|{x}_{q}|=0$ for all $q\ne p$ , then $|\lambda -{a}_{p\cdots p}|-{r}_{p}^{q}\left(A\right)\le 0$ , and $\lambda \in \Delta \left(A\right)$ . If $|{x}_{q}|>0$ , from equality (1), we have

$|\lambda -{a}_{q\cdots q}|{|{x}_{q}|}^{m-1}\le {r}_{q}\left(A\right){|{x}_{p}|}^{m-1}.$ (4)

Multiplying inequalities (3) with (4), we have

$|\lambda -{a}_{q\cdots q}|\left(|\lambda -{a}_{p\dots p}|-{r}_{p}^{q}\left(A\right)\right)\le {r}_{q}\left(A\right)|{a}_{pq\cdots q}|,$ (5)

which implies that $\lambda \in {\Delta }_{p,q}\left(A\right)$ . From the arbitrariness of q, we have $\lambda \in \Delta \left(A\right)$ . ,

Remark 1. Obviously, we can get $K\left(A\right)\subseteq \Delta \left(A\right)$ . That is to say, our new eigenvalue inclusion sets are always tighter than the inclusion sets in Theorem 2.

Remark 2. If the tensor $A$ is nonnegative, from (5), we can get

$\left(\lambda -{a}_{q\cdots q}\right)\left(\lambda -{a}_{p\cdots p}-{r}_{p}^{q}\left(A\right)\right)\le {r}_{q}\left(A\right){a}_{pq\cdots q}.$

Then, we can get,

$\lambda \le \frac{1}{2}\left\{{a}_{p\cdots p}+{a}_{q\cdots q}+{r}_{p}^{q}\left(A\right)+{\Theta }_{p,q}^{\frac{1}{2}}\left(A\right)\right\}$

where

${\Theta }_{p,q}\left(A\right)={\left({a}_{p\cdots p}-{a}_{q\cdots q}+{r}_{p}^{q}\left(A\right)\right)}^{2}+4{a}_{pq\cdots q}{r}_{q}\left(A\right).$

From the arbitrariness of q, we have

$\lambda \le \underset{i\in N}{max}\underset{j\in N,j\ne i}{min}\frac{1}{2}\left\{{a}_{j\cdots j}+{a}_{i\cdots i}+{r}_{j}^{i}\left(A\right)+{\Theta }_{j,i}^{\frac{1}{2}}\left(A\right)\right\}.$

That is to say, from Theorem 3, we can get another proof of the result in Theorem 13 in  .

Funds

Jun He is supported by Science and technology Foundation of Guizhou province (Qian ke he Ji Chu 1161); Guizhou province natural science foundation in China (Qian Jiao He KY 255); The doctoral scientific research foundation of Zunyi Normal College (BS 09); High-level innovative talents of Guizhou Province (Zun Ke He Ren Cai 8). Yan-Min Liu is supported by National Natural Science Foundations of China (71461027); Science and technology talent training object of Guizhou province outstanding youth (Qian ke he ren zi 06); Guizhou province natural science foundation in China (Qian Jiao He KY 295); 2013, 2014 and 2015 Zunyi 15,851 talents elite project funding; Zhunyi innovative talent team(Zunyi KH (2015)38). Tian is supported by Guizhou province natural science foundation in China (Qian Jiao He KY 451); Scienceand technology Foundation of Guizhou province (Qian ke he J zi 2147). Xiang-Hu Liu is supported by Guizhou Province Department of Education Fund KY 391, 046; Guizhou Province Department of Education teaching reform project 337; Guizhou Province Science and technology fund (qian ke he ji chu) 1160.

Conflicts of Interest

The authors declare no conflicts of interest.

  Li, C., Li, Y. and Kong, X. (2014) New Eigenvalue Inclusion Sets for Tensors. Numerical Linear Algebra with Applications, 21, 39-50. https://doi.org/10.1002/nla.1858  Chang, K.C., Pearson, K. and Zhang, T. (2008) Perron-Frobenius Theorem for Nonnegative Tensors. Communications in Mathematical Sciences, 6, 507-520. https://doi.org/10.4310/CMS.2008.v6.n2.a12  Chang, K.C., Pearson, K. and Zhang, T. (2009) On Eigenvalue Problems of Real Symmetric Tensors. Journal of Mathematical Analysis and Applications, 350, 416-422. https://doi.org/10.1016/j.jmaa.2008.09.067  Qi, L. (2007) Eigenvalues and Invariants of Tensor. Journal of Mathematical Analysis and Applications, 325, 1363-1377. https://doi.org/10.1016/j.jmaa.2006.02.071  Qi, L. (2013) Symmetric Nonnegative Tensors and Copositive Tensors. Linear Algebra and Its Applications, 439, 228-238. https://doi.org/10.1016/j.laa.2013.03.015  Ng, M.K., Qi, L. and Zhou, G. (2009) Finding the Largest Eigenvalue of a Non-Negative Tensor. SIAM Journal on Matrix Analysis and Applications, 31, 1090-1099.  Zhang, L., Qi, L. and Zhou, G. (2012) M-Tensors and the Positive Definiteness of a Multivariate Form. Preprint, arXiv:1202.6431.  Ding, W., Qi, L. and Wei, Y. (2013) M-Tensors and Nonsingular M-Tensors. Linear Algebra and Its Applications, 439, 3264-3278. https://doi.org/10.1016/j.laa.2013.08.038  Li, C., Wang, F., Zhao, J.X., Zhu, Y. and Li, Y.T. (2014) Criterions for the Positive Definiteness of Real Supersymmetric Tensors. Journal of Computational and Applied Mathematics, 255, 1-14. https://doi.org/10.1016/j.cam.2013.04.022  Qi, L. (2005) Eigenvalues of a Real Supersymmetric Tensor. Journal of Symbolic Computation, 40, 1302-1324. https://doi.org/10.1016/j.jsc.2005.05.007  Lim, L.H. (2005) Singular Values and Eigenvalues of Tensors: A Variational Approach. Proceedings of the IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP 05), Vol. 1, IEEE Computer Society Press, Piscataway, NJ, 129-132.  Li, C., Chen, Z. and Li, Y. (2015) A New Eigenvalue Inclusion Set for Tensors and Its Applications. Linear Algebra and Its Applications, 481, 36-53. https://doi.org/10.1016/j.laa.2015.04.023 