Molecular and cellular pathways involved in the therapeutic functions of MHC molecules; a novel approach for mitigation of chronic rejection
Thomas S. Skelton, Malgorzata Kloc, Rafik M. Ghobrial
DOI: 10.4236/oji.2011.12003   PDF   HTML     4,881 Downloads   11,713 Views   Citations


The mutated major histocompatibility complex (MHC) class I that contains donor-type epitopes displayed on recipient-type molecule was show- n to inhibit acute and chronic rejection and in-duce indefinite survival of heterotopic cardiac allografts when administered in combination with a sub-therapeutic dose of cyclosporine (CsA) in a rat transplantation model. To eluci-date the molecular pathways involved in the immunosuppressive effects of the mutated MHC molecule, we analyzedgene and protein expres-sion profile during early and late phase follow-ing post-transplantation. Cytoskeletal structure analysis and expression status of Rho GTPase proteins, vacuolar transport and cytoskeleton regulatory pathways involved in immune re-sponse in T and dendritic cells demonstrated the novel mechanism for the abrogation of chronic rejection. Our studies confirm a new role of Rho GTPase pathway in the modification of T cell motility and infiltration of the graft. We discuss these results within the framework of the most recent literature on MHC and molecu-lar machinery controlling T cell functions and dendritic cell antigen presentation.

Share and Cite:

Skelton, T. , Kloc, M. and Ghobrial, R. (2011) Molecular and cellular pathways involved in the therapeutic functions of MHC molecules; a novel approach for mitigation of chronic rejection. Open Journal of Immunology, 1, 15-26. doi: 10.4236/oji.2011.12003.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Bach FH, Amos DB. (1967).Hu-1:major histocompatibility locus in man. Science 156, 1506-1508. doi:10.1126/science.156.3781.1506
[2] Chinen J, Buckley RH. (2010). Transplantation immunology:solid organ and bone marrow. J Allergy ClinImmunol. 125, S324-335. doi:10.1016/j.jaci.2009.11.014
[3] Cohen DJ, Loertscher R, Rubin MF, Tilney NL, Carpenter CB, Strom TB. (1984). Cyclosporin: a new immunosuppressive agent for organ transplantation. Ann Intern Med. 10,667-682.
[4] Hariharan S, Johnson CP, Bresnahan BA, et al. (2000). Improved graft survival after renal transplantation in the United States, 1988 to 1996. N Engl J Med. 342,605-12. doi:10.1056/NEJM200003023420901
[5] Cecka JM. (2002). The UNOS Renal Transplant Registry. ClinTranspl. 1-20.
[6] Safinia N, Afzail B, Atalar K, et al. (2010). T-cell alloimmuntiy and chronic allograft dysfunction. Kidney international. 78 (suppl 119),S2-S12. doi:10.1038/ki.2010.416
[7] Klein J, Sato A. (2000). The HLA system: second of two parts. N Engl J Med. 343,782-786.
[8] Marsh SG. (2009). WHO nomenclature committee for factors of the HLA system. Nomenclature for factors of the HLA system, up-date. Tissue Antigens 74,364-366. doi:10.1111/j.1399-0039.2009.01330.x
[9] Klein J, Sato A. (2000). The HLA system: first two parts. N Engl J Med. 343,702-709.
[10] Zinkernagel RM, Doherty PC. (1974). Restriction of invitro T cell-mediated cytotoxicity in lymphocytic choriomeningitis within a syngeneic or semiallogeneic system. Nature 248, 701-702. doi:10.1038/248701a0
[11] Scott A, Sant L, Sant A. (2010). Generation of MHC class II-peptide ligands for CD4 T cell allorecognition of MHC class II mole-cules. CurrOpin Organ Transplant. 15,505-511. doi:10.1097/MOT.0b013e32833bfc5c
[12] Li X, Raghavan M. (2010). Structure and function of major histocompatability complex class I antigens. CurrOpin Organ Trans-plant.15,499-504. doi:10.1097/MOT.0b013e32833bfb33
[13] Trivedi HL. (2007).Immunobiology of rejection and adaptation. Transpl Proc. 39,647-652. doi:10.1016/j.transproceed.2007.01.047
[14] Stern LJ, Wiley DC. (1994). Anitgenic peptide binding by class I and class II histocompatibility proteins. Structure 2,245-251. doi:10.1016/S0969-2126(00)00026-5
[15] Jensen PE. (2007). Recent advances in antigen processing and presentation. Nature Immunol. 8, 1041-1048. doi:10.1038/ni1516
[16] Afzail B, Lombardi G, Lechler R. (2008). Pathways of major histocompatability complex allorecognition. CurrOpin Organ Trans-plant. 13, 438-444. doi:10.1097/MOT.0b013e328309ee31
[17] Jensen PE. (1999). Mechanisms of antigen presentation. ClinChem Lab Med. 37, 179-186. doi:10.1515/CCLM.1999.034
[18] Elliot T, Williams A. (2005). The optimization of peptide cargo bound to MHC class I molecules by the peptide-loading complex. Immunol Rev. 207,89-99. doi:10.1111/j.0105-2896.2005.00311.x
[19] Warrens AN, Lombardi G, Lechler RI, et al. (1994). Presentation and recognition of major and minor histocompatability antigens. TransplImmunol. 2, 103-107. doi:10.1016/0966-3274(94)90036-1
[20] Lechler RI, Batchelor JR. (1982). Restoration of immunogenicity to passenger cell-depleted kidney allografts by the addition of do-nor strain dendritic cells. J Exp Med 155,31-41. doi:10.1084/jem.155.1.31
[21] Ely LK, Burrows SR, Purcell AW, et al. (2008). T cells behaving badly: structural insights into alloreactivity and autoimmunity. CurrOpinImmunol. 20,575-580. doi:10.1016/j.coi.2008.07.006
[22] Baker RJ, Hernandez-Fuentes MP, Brookes PA, et al. (2001). The role of the allograft in the induction of donor-specific T cell hy-poresponsiveness. Transplantation 72,480-485. doi:10.1097/00007890-200108150-00020
[23] Suchin EJ, Langmuir PB, Palmer E, et al. (2001). Qunatifying the frequency of allreactive T cells in vivo: new answeres to an old question. J Immunol. 166,973-981.
[24] Gras S, Kjer-Nelson L, Chen Z, et al. (2011). The structural bases of direct T-cell allorecognition: implication for T-cell mediated transplant rejection. ImmunolCell Biol. 5, 1-8.
[25] Crispe IN, Husmann LA, Bevan MJ. (1986). T cell receptor expression and receptor-mediated induction of clonal growth in the de-veloping mouse thymus. High surface beta-chain density is a requirement for functional maturity. Eur J Immunol 16,1283-1288. doi:10.1002/eji.1830161016
[26] Matzinger P, Bevan MJ. (1977). Hypothesis: why do so many lymphocytes respond to major histocompatability antigens? Cell Im-muol 29,1-5. doi:10.1016/0008-8749(77)90269-6
[27] Archbold JK, Macdonald WA, Miles JJ, et al. (2006). Alloreactivity between disparate cognate and allogeneic pMHC-I complexes is the result of highly focused, peptide-dependent structural mimicry. J BiolChem 281,34324-34332. doi:10.1074/jbc.M606755200
[28] Turner SJ, Doherty PC, McClusky J, et al. (2006). Structural derminants of T-cell receptor bias in immunity. Nat Rev Immunol 6,883-894. doi:10.1038/nri1977
[29] Pietra BA, Wiseman A, Bolwerk A, et al. (2000). CD4 T cell-mediated cardiac allograft rejection requires donor but not host MHC class II. J Clin Invest 106,1003-1010.
[30] Shoskes DA, Wood KJ. (1994). Indirect presentation of MHC antigens in transplantation. Immunol Today 15,32-38. doi:10.1016/0167-5699(94)90023-X
[31] Liu Z, Braunstein NS, Suciu FN. (1992). T cell recognition of allopeptides in context of self MHC. J Immunol148,35-40.
[32] Watts C. (2004). The exogenous pathway for antigen presentation on major histocompatibility complex class II and CD1 molecules. Nat Immunol 5,670-677. doi:10.1038/ni1088
[33] Cresswell P. (1996). Invariant chain structure and MHC class II function. Cell 84,505-507. doi:10.1016/S0092-8674(00)81025-9
[34] Inaba K, Turley S, Yamaide F, et al. (1998). Efficient presentation of phagocytosed cellular fragments on the major histocompatibility complex class II products of dendritic cells. J Exp Med 188,2163-2173. doi:10.1084/jem.188.11.2163
[35] Fangmann J, Dalchau R, Fabre JW. (1992). Rejection of skin allografts by indirect allorecognition of donor class I major histocom-patabiltiy complex peptides. J Exp Med 175, 1521-1529. doi:10.1084/jem.175.6.1521
[36] Skelton TS, Tejpal N, Gong Y, et al. (2011). Allochimerich molecules and mechanisms in the abrogation of cardiac allograft rejection. J Heart Lung TransplantEpub, ahead of print.
[37] Gokmen MR, Giovanna L, Lechler RI. (2008). The importance of the indirect pathway of allorecognition in clinical transplantation. CurrOpinImmunol 20,568-574. doi:10.1016/j.coi.2008.06.009
[38] Singer JS, Mhoyan A, Fishbein M, et al. (2001). Allochimeric class I MHC molecules prevent chronic rejection and attenuate alloan-tibody response. Transplantation 72,1408-1416. doi:10.1097/00007890-200110270-00014
[39] Valujskikh A, Lantz O, Celli S, et al. (2002). Cross primed CD8(+) T cells mediate graft rejection via a distinct effector pathway. Nat Immunol 3,844-851. doi:10.1038/ni831
[40] Kapessidou Y, Habran C, Buonocore S, et al. (2006). The replacement of graft endothelium by recipient-type cells conditions al-lograft rejection mediated by indirect pathway CD4+ T cells. Transplantation 2006; 82:582-591. doi:10.1097/
[41] Herrera OB, Golshayan D, Tibbott R, et al. (2004). A novel pathway of alloantigen presentation by dendritic cells. J Immunol 173,4828-4837.
[42] Ridge JP, Di RF, Matzinger PA. (1998). A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell. Nature 393, 474-478. doi:10.1038/30989
[43] Lee RS, Grusby MJ, Glimcher LH, et al. (1994). Indirect recognition by helper cells can induce donor-specific cytotoxic T lympho-cytes in vivo. J Exp Med 179,865-872. doi:10.1084/jem.179.3.865
[44] Wise MP, Bemelman F, Cobbold SP, et al. (1998). Linked suppression of skin graft rejection can operate through indirect recognition. J Immunol 161,5813-5816.
[45] Games DS, Rogers NJ, Lechler RI. (2005). Acquisition of HLA-DR and costimulatory molecules by T cells from allogeneic antigen presenting cells. Am J Transplant 5,1614-1625. doi:10.1111/j.1600-6143.2005.00916.x
[46] Morelli AE, Larregina AT, Shufesky WJ, et al. (2004). Endocytosis, intracellular sorting and processing of exosomes by dendritic cells. Blood 104,3257-3266. doi:10.1182/blood-2004-03-0824
[47] Pimenta-Araujo R, Mascarell L, Huesca M, et al. (2001). Embryonic thymic epithelium naturally devoid of APCs is acutely rejected in the absence of indirect recognition. J Immunol 167,5034-5041.
[48] Calne RY, Sells RA, Pena JR, et al. (1969). Induction of immunologic tolerance by porcine liver allografts. Nature 223,472-476. doi:10.1038/223472a0
[49] Zeigler SF. (2006). Foxp3: Of mice and men. Ann Rev Immunol 24,209-226. doi:10.1146/annurev.immunol.24.021605.090547
[50] Toyokawa H, Nakao A, Bailey RJ, Nalesnik MA, et al. (2008). Relative contribution of direct and indirect allorecognition in developing tolerance after liver transplantation. Liver Transpl. 14,346-357. doi:10.1002/lt.21378
[51] Callaghan CJ, Rouhani FJ, Negus MC, Curry AJ, Bolton EM, Bradley JA, Pettigrew GJ. (2007). Abrogation of antibody-mediated allograft rejection by regulatory CD4 T cells with indirect allospecificity. J Immunol 178, 2221-2228.
[52] Billingham RE, Brent L, Medawar PB. (2010). Actively acquired tolerance of foreign cell.1953.J Immunol. 184, 5-8. doi:10.4049/jimmunol.0990109
[53] Sayegh MH, Perico N, Gallon L, et al. (1994). Mechanism of acquired thymichyporesponsiveness to renal allografts. Thymic recognition of immunodominantallo-MHC peptides induces peripheral T cell anergy. Transplantation 58, 125-132. doi:10.1097/00007890-199407270-00001
[54] Zhou C, Lu R, Lin G, et al. (2011). The latest developments in synthetic peptides with immunoregulatory activities. Peptides 32,408-414. doi:10.1016/j.peptides.2010.10.019
[55] Krensky AM, Clayberger C. (1997). HLA-derived peptides as novel immunosuppressives. Nephrol Dial Transplant 12,865-878. doi:10.4049/jimmunol.0990109
[56] Gobrial RM, Hamashima W, Wang M, et al. (1996). Induction of transplantion tolerance by chimeric donor/recipient class I RT1.Aa molecules. Transplantation 62,1002-1010. doi:10.1097/00007890-199610150-00020
[57] Lisik W, Gong Y, Tejpal N, et al. (2010).Intragraft gene expression profile associated with the induction of tolerance by allochimeric MHC I in the rat heart transplant model. Genesis 1, 8-19.
[58] Lisik W, Tejpal N, Gong Y, et al. (2009). Down regulation of genes involved in T cell polarity and motility during the induction of heart allograft tolerance by allochimeric MHC I. PlosOne4:e8020. doi:10.1371/journal.pone.0008020
[59] Skelton TS, Tejpal N, Gong, Y, et al. (2010). Downregulation of RhoA and changes in T cell cytoskeleton correlate with the abrogation of allograft rejection. Transplant Immunol 23,185-193. doi:10.1016/j.trim.2010.06.009
[60] Wheeler AP, Ridley AJ. (2004). Why three Rho proteins? RhoA, RhoB, RhoC and cell motility. Exp Cell Res 301, 43-49. doi:10.1016/j.yexcr.2004.08.012
[61] Semiletova N, Shen XD, Baibakov B, et al. (2010). Intensity of transplant chronic rejection correlates with level of graft-infiltrating regulatory cells. J Heart Lung Transplant 29,335-341. doi:10.1016/j.healun.2009.08.003

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.