Temperature and Orientation Dependence of Ultrasonic Parameters in Americium Monopnictides
Devraj Singh, Raj Kumar, Dharmendra Kumar Pandey
DOI: 10.4236/ampc.2011.12006   PDF   HTML     4,853 Downloads   9,370 Views   Citations


The temperature dependence of the ultrasonic parameters like ultrasonic velocities and Grüneisen parameters in americium monopnictides AmY (Y: N, P, As, Sb and Bi) have been studied for longitudinal and shear waves along <100>, <110> and <111> crystallographic directions in the temperature range 100 K - 500 K. The second- and third- order elastic constants have also been evaluated for these monopnictides using Coulomb and Born-Mayer potential. The values of elastic constants are the highest for AmN. Hence the mechanical properties of AmN are better than other monopnictides AmP, AmAs, AmSb and AmBi. Ultrasonic velocity is found large for AmP. So the ultrasonic wave propagation will be much better than others in AmP. Obtained results are compared with available results of same type of materials.

Share and Cite:

D. Singh, R. Kumar and D. Pandey, "Temperature and Orientation Dependence of Ultrasonic Parameters in Americium Monopnictides," Advances in Materials Physics and Chemistry, Vol. 1 No. 2, 2011, pp. 31-38. doi: 10.4236/ampc.2011.12006.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] G. G. Saharabudhe and S. D. Lambade, “Study of Elastic and Acoustic Non-Linearities in Solids at Room Tem-perature,” Journal of Physics Chemistry of Solids, Vol. 59, No. 5, 1998, pp. 789-808. doi:10.1016/S0022-3697(97)00116-9
[2] D. Singh, D. K. Pandey, D. K. Singh and R. R. Yadav, “Propagation of Ultrasonic Waves in Neptunium Mono- chalcogenides,” Applied Acoustics, Vol. 72, No. 10, 2011, pp. 737-741. doi:10.1016/j.apacoust.2011.04.002
[3] A. K. Pandey, B. K. Pandey and Rahul, “Theoretical Prediction of Grüneisen Parameters for Bulk Metallic Glasses,” Journal of Alloys and Compounds, Vol. 509, No. 11, 2011, pp. 4191-4197. doi:10.1016/j.jallcom.2010.11.120
[4] V. P. Singh and M. P. Hemkar, “Dynamical Theory for Grüneisen Parameters in Fcc Metals,” Journal of Physics F: Metals Physics, Vol. 7, No. 5, 1977, pp. 761-769. doi: 10.1088/0305-4608/7/5/008
[5] D. N. Joharpurkar and M. A. Breazeale, “Nonlinearity Parameters, Nonlinearity Constant and Frequency De-pendence of Ultrasonic Attenuation in GaAs,” Journal of Applied Physics, Vol. 67, No. 1, 1999, pp. 76-80. doi:10.1063/1.345208
[6] D. B. Ghosh, S. K. De, P. M. Oppeneer and M. S. S. Brooks, “Electronic Structure and Optical Properties of Am Monopnictides,” Physical Review B, Vol. 72, No. 11, 2005, p. 115123(10). doi:10.1103/PhysRevB.72.11512
[7] J. W. Roddy, “Americium Metalloids: AmAs, AmSb, AmBi, Am3Se4 and AmSe2,” Journal of Inorganic Nuc-lear Chemistry, Vol. 36, No. 11, 1974, pp. 2531-2533. doi:10.1016/0022-1902(74)80466-5
[8] J. M. Friedt, R. Poinsot, J. Rebizant and W. Muller, “237Np Emission Spectra in 241Am: AmO2, AmAs and AmBi Sources,” J de Physique, Colloque, Vol. C6, 1976, pp. 935-939. doi:10.1051/jphyscol:19766201
[9] J. K. Gibson and R. G. Haire, “Preparation and Lattice Parameters of Americium and Curium Monobismuthides,” Journal of Less Common Metals, Vol. 132, No. 1, 1987, pp. 149-154. doi:10.1016/0022-5088(87)90183-4
[10] L. Petit, A. Svane, W. M. Temmerman and Z. Snotele, “Self Interaction-Corrected Description of Electronic Properties of Americium Monochalcogenides and Mo-nopnictides,” Physical Review B, Vol. 63, 2001, p. 165107(7). doi:10.1103/PhysRevB.63.165107
[11] G. Leibfried and H. Haln, “Zur Temperaturabhangigkeit der Elastischen Konstantaaen von Alhalihalogenidkristall en,” Zeitschrift für Physik, Vol. 150, 1958, pp. 497-525.
[12] S. Mori and Y. Hiki, “Calculation of the Third- and Fourth-Order Elastic Constants of Alkali Halide Crystals,” Journal of the Physical Society of Japan, Vol. 45, No. 5, 1975, pp. 1449-1456. doi:10.1143/JPSJ.45.1449
[13] D. K. Pandey and S. Pandey, “Ultrasonics: A Technique of Material Characterization, in: Acoustic Waves,” Don W. Dissanayake, Ed., Sciyo Publisher, Rijeka, 2010, pp. 397-430.
[14] R. Nava and J. Romero, “Ultrasonic Grüneisen Parameter for Non-Conducting Cubic Crystals,” Journal of the Acoustical Society of America, Vol. 64, No. 2, 1978, pp. 529-532. doi:10.1121/1.382004
[15] K. Brugger, “Generalized Grüneisen Parameters in the Anisotropic Debye Model,” Physical Review, Vol. 137, No. 6A, 1965, pp.1826-1827. doi: 10.1103/PhysRev.137.A1826 .
[16] S. D. Lambade, G. G. Sahasrabudhe and S. Rajagopalan, “Temperature Dependence of Acoustic Attenuation in Sili-con,” Physical Review, Vol. 51, No. 22, 1995, pp. 15861-15866. doi: 10.1103/PhysRevB.51.15861
[17] W. P. Mason, “Physical Acoustics, Vol. IIIB,” Academic Press, New York, 1965.
[18] D.Singh, “Behaviour of acoustic attenuation in rare-earth chalcogenides,” Materials Chemistry and Physics, Vol. 115, No. 1, 2009, pp. 65-68. doi:10.1016/j.matchemphys.2008.11.025
[19] R. R. Yadav, A. K. Tiwari and D. Singh, “Effect of Pres-sure on Ultrasonic Attenuation in Ce-Monopnictides at Low Temperature,” Journal of Materials Science, Vol. 40, No. 19, 2005, pp. 5319-5321. doi:10.1007/s10853-005-4397-y.
[20] D. Singh, R. R. Yadav and A. K. Tiwari, “Ultrasonic Attenuation in Semiconductors,” Indian Journal of Pure & Applied Physics, Vol. 40, No. 12, 2002, pp. 845-849.
[21] R. R. Yadav and D. Singh, “Effect of Thermal Conduc-tivity on Ultrasonic Attenuation in Praseodymium Mo-nochalcogenides,” Acoustical Physics, Vol. 49, No. 5, 2005, pp. 595-604. doi: 10.1134/1.1608987
[22] D. Singh, D. K. Pandey and P. K. Yadawa, “Ultrasonic Wave Propagation in Rare-Earth Monochalcogenides,” Central European Journal of Physics, Vol. 7, No. 1, 2009, pp. 198-205. doi:10.2478/s11534-008-0130-1
[23] R. R. Yadav, A. K. Gupta and D. Singh, “Ultrasonic At-tenuation in Ni-Pd Alloys at High Temperature Phase,” Journal of Physical Studies, Vol. 9, No. 3, 2005, pp. 227-232.
[24] R. R. Yadav and D. Singh, “Ultrasonic Attenuation in Lanthanum Monochalcogenides,” Journal of the Physical Society of Japan, Vol. 70, No. 6, 2001, pp. 1825-1832. doi: 10.1143/JPSJ.70.1825

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.