Temperature Dependence of the Magnetic and Electric Properties of Ca2Fe2O5
Cléber Candido da Silva, Antonio S. B. Sombra
DOI: 10.4236/msa.2011.29183   PDF   HTML     5,198 Downloads   10,099 Views   Citations


Ca2Fe2O5 powder sample, were prepared to investigate the origin of the weak ferromagnetic component reported in literature for calcium ferrite single crystals. In this work, the calcination method was used to produce nanocrystalline powders of Ca2Fe2O5. XRD measurement has shown the presence of Fe3O4 magnetite and CaO as impurity phases. The ferrimagnetic phase deeply influences the magnetic behavior with features very similar to those reported in literature for Ca2Fe2O5, both powders and single crystals. Our results support the hypothesis that the weak ferromagnetic component observed in Ca2Fe2O5 can be also due to the presence of magnetite impurity traces in the samples. The powders were submitted to calcination processes at 500℃ for 2 hours and 950℃ for 16 hours. The sintered sample was submitted at 1050℃ for 6 hours and characterized by X-Ray Powder diffraction (XRD), dielectric measurements, Magnetization and Scanning Electron Microscopy (SEM) analysis.

Share and Cite:

C. Silva and A. Sombra, "Temperature Dependence of the Magnetic and Electric Properties of Ca2Fe2O5," Materials Sciences and Applications, Vol. 2 No. 9, 2011, pp. 1349-1353. doi: 10.4236/msa.2011.29183.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] L. A. Isupova, S. W. Tsybulya, G. N. Kryukova, A. A. Budneva, E. A. Paukshtis, G. S. Litvak, V. P. Ivanov, V. N. Kolomiichuk, Yu. T. Pavlyukhin and V. A. Sadykov, “Mechanochemical Synthesis and Catalytic Properties of the Calcium Ferrite Ca2Fe2O5,” Kinetics and Catalysis, Vol. 43, No. 1, 2002, pp. 122-128. doi:10.1023/A:1014217716883
[2] A. A. Colville, “Structural Crystallography and Crystal Chemistry,” Acta Crystallographica, Vol. B26, 1970, pp. 1469-1473.
[3] J. Berggren, “Refinement of the Crystal Structure of Dicalcium Ferrite, Ca2Fe2O5,” Acta Chemica Scandinavica, Vol. 25, 1971, pp. 3616-3624. doi:10.3891/acta.chem.scand.25-3616
[4] E. F. Bertaut, P. Blum and A. Sagnières, “Structure du ferrite bicalcique et de la brownmillerite,” Acta Crystallo- graphica, Vol. 12, No. 2, 1959, pp. 149-159. doi:10.1107/S0365110X59000433
[5] V. A. Sadykov, L. A. Isupova, S. F. Tikhov and O. N. Kimkhai, “Synthesis and Properties of Advanced Ceramic Materials,” Materials Research Society Symposium Series, MRS Fall Meeting, Vol. 386, 1995, p. 293.
[6] B. Lazi?, H. Krüger, V. Kahlenberg, J. Konzett and R. Kaindl, “Incommensurate Structure of Ca2Al2O5 at High Temperatures-Structure Investigation and Raman Spec- troscopy,” Acta Crystallographica, Vol. B64, No. 4, 2008, pp. 417-425.
[7] L. M. Corliss, J. M. Hastings, W. Kunnmann and E. Banks, “Magnetic Structures and Exchange Interactions in the Systems CaCrxFe2–xO4 and Ca2CrxFe2–xO5,” Acta Crystallographica, Vol. 21, 1966, p. A95.
[8] R. W. Grant, S. Geller, H. Wiedersich, U. Gonser and L. D. Fullmer, “Spin Orientation and Magnetic Properties of Ca2FeAlO5,” Journal of Applied Physics, Vol. 39, No. 2, 1968, pp. 1122-1123. doi:10.1063/1.1656192
[9] T. Takeda, Y. Yamaguchi, S. Tomiyoshi, M. Fukase, M. Sugimoto, H. Watanabe, “Magnetic Structure of Ca2Fe2O5,” Journal of the Physical Society of Japan, Vol. 24, No. 3, 1968, pp. 446-452. doi:10.1143/JPSJ.24.446
[10] S. Geller, R. W. Grant and L. D. Fullmer, “Magnetic Structures in the Ca2Fe2–xAlxO5 System,” Journal of Physics and Chemistry of Solids, Vol. 31, No. 4, 1970, pp. 793-803. doi:10.1016/0022-3697(70)90213-1
[11] S. Geller, R. W. Grant and U. Gonser, “Crystal Chemistry and Magnetic Structures of Substituted Ca2[Fe](Fe)O5,” Progress in Solid State Chemistry, Vol. 5, 1971, pp. 1-26. doi:10.1016/0079-6786(71)90015-X
[12] P. Berastegui, S. G. Eriksson and S. Hull, “A Neutron Diffraction Study of the Temperature Dependence of Ca2Fe2O5,” Materials Research Bulletin, Vol. 34, No. 2, 1999, pp. 303-314. doi:10.1016/S0025-5408(99)00007-0
[13] A. L. Shaula, Y. V. Pivak, J. C. Waerenborgh, P. Gaczy?ski, A. A. Yaremchenko and V. V. Kharton, “Ionic Conductivity of Brownmillerite-Type Calcium Ferrite under Oxidizing Conditions,” Solid State Ionics, Vol. 177, No. 33-34, 2006, pp. 2923-2930. doi:10.1016/j.ssi.2006.08.030
[14] C. N. R. Rao and J. Gopalakrishnan, “New Directions in Solid State Chemistry: Structure, Synthesis, Properties, Reactivity, and Materials Design,” Cambridge University Press, Cambridge, 1986.
[15] Y. Yang, Z. Cao, Y. Jiang, L. Liu and Y. Sun, “Photo- induced Structural Transformation of SrFeO3 and Ca2Fe2O5 during Photodegradation of Methyl Orange,” Materials Science and Engineering: B, Vol. 132, No. 3, 2006, pp. 311-314. doi:10.1016/j.mseb.2006.03.031
[16] D. Hirabayashi, T. Yoshikawa, K. Mochizuki, K. Suzuki and Y. Sakai, “Formation of Brownmillerite Type Calcium Ferrite (Ca2Fe2O5) and Catalytic Properties in Propylene Combustion,” Catalysis Letters, Vol. 110, No. 3-4, 2006, pp. 269-274. doi:10.1007/s10562-006-0120-0
[17] D. Hirabayashi, Y. Kawamoto and K. Suzuki, “Catalytic Decomposition of Vocs and Chlorine Fixation on Calcium Ferrites with Brownmillerite Type Structure,” Jour- nal of the Society of Inorganic Materials, Japan, Vol. 14, No. 327, 2007, pp. 83-91.
[18] S. Shin, Y. Hatakeyama, K. Ogawa and K. Shimomura, “Catalytic Decomposition of Nitric Oxide over Brownmillerite-Like Compounds, Calcium Ferrate(III) (Ca2Fe2O5) and Strontium Ferrate(III) (Sr2Fe2O5),” Materials Research Bulletin, Vol. 14, No. 1, 1979, pp. 133-136. doi:10.1016/0025-5408(79)90241-1
[19] J. H. White, A. F. Sammells and J. D. Wander, “Catalysts for Direct Decomposition of NOx in Exhausts,” Proceedings of the 93rd Air and Waste Management Association’s Annual Conference and Exhibition, Salt Lake City, UT, United States, 2000.
[20] E. Woermann, W. Eysel, T. Hahn, “Polymorphism and Solid Solution of the Ferrite Phase,” Proceedings of the Fifth International Symposium on the Chemistry of Cement, Tokyo, Supplementary Paper I-54, 1968, pp. 54- 60.
[21] G. J. Redhammer, G. Tippelt, G. Roth and G. Amthauer, “Structural Variations in the Brownmillerite Series Ca2(Fe2–xAlx)O5: Single-Crystal X-Ray Diffraction at 25±?C and High-Temperature X-Ray Powder Diffraction (25±?C ? T ? 1000±?C),” American Mineralogist, Vol. 89, 2004, pp. 405-420.
[22] K. Fukuda and H. Ando, “Determination of the Pcmn=Ibm2 Phase Boundary at High Temperatures in the System Ca2Fe2O5-Ca2Al2O5,” Journal of the American Ceramic Society, Vol. 85, No. 5, 2002, pp. 1300-1303. doi:10.1111/j.1151-2916.2002.tb00263.x
[23] H. Krüger and V. Kahlenberg, “Incommensurately Modulated Ordering of Tetrahedral Chains in Ca2Fe2O5 at Elevated Temperatures,” Acta Crystallographica Section B, Vol. 61, No. 6, 2005, pp. 656-662.
[24] T. Janssen, A. Janner, A. Looijenga-Vos and P. M. de Wolff, “Mathematical, Physical and Chemical Tables, In- commensurate and Commensurate Modulated Structures,” Kluwer Academic Publishers, Dordrecht, 2004.
[25] JCPDS—Pattern 38-0408 (Ca2Fe2O5), 03-0863 (Fe3O4) and 82-1690 (CaO).
[26] I. G. Minyaylova, I. A. Presnyakov, K. V. Pokholok, A. V. Sobolev, A. V. Baranov, G. Demazeau, G. A. Govor and A. K. Vetcher, “Hyperfine Interactions and Dynamic Characteristics of 119Sn Dopant Atoms in Ca2Fe2O5,” Journal of Solid State Chemistry, Vol. 151, No. 2, 2000, pp. 313-316. doi:10.1006/jssc.2000.8660
[27] C. Brotzeller, R. Geick and P. Marchukov, “Magnetic Excitations in Dicalcium Ferrite,” Solid State Communi- cations, Vol. 82, No. 11, 1992, pp. 923-925. doi:10.1016/0038-1098(92)90721-K
[28] B. Yang, J. Zhou, Z. Gui, Z. Yue and L. Li, “Preparation and Magnetic Characterization of Y-Type Hexaferrites Containing Zinc, Cobalt and Copper,” Materials Science and Engineering B, Vol. 99, No. 1-3, 2003, pp. 266-269. doi:10.1016/S0921-5107(02)00545-7
[29] K. P. Padmasree, D. K. Kanchan, A. R. Kulkami, “Impedance and Modulus Studies of the Solid Electrolyte System 20CdI2-80[xAg2O-y(0.7V2O5-0.3B2O3)], Where 1 ≤ x/y ≤ 3,” Solid State Ionics, Vol. 177, No. 5-6, 2006, pp. 475-482
[30] S. K. Barik, P. K. Mahapatra, R. N. P. Ghoudhary, “Structural and Electrical Properties of Na1/2La1/2TiO3 Ceramics,” Applied Physics A: Materials Science & Processing, Vol. 85, 2006, pp. 199-203.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.