Structural Characterization of Borate Glasses Containing Zinc and Manganese Oxides
Manisha Pal, Baishakhi Roy, Mrinal Pal
DOI: 10.4236/jmp.2011.29129   PDF   HTML     7,998 Downloads   16,595 Views   Citations


We have investigated the effect of inclusion of two transition metal ions (TMI) on structure and optical properties of borate glass system having composition xMnO2yZnO – (100 – xy) B2O3 (9 ≤ x ≤ 12, 36 ≤y ≤ 48) prepared by melt quenched route. Thermal study by using a differential scanning calorimeter (DSC) reveals that the glass transition temperature (Tg) and crystallization temperature (Tc) of the glasses increases with the increase of borate content in the system. Fourier transform infrared (FTIR) spectra indicate that inclusion of TMI produces BO3 and BO4 structural units by breaking the boroxol (B3O6) ring. The optical band gap energy estimated from ultraviolet-visible spectra shows a decreasing tendency when TMI are incorporated in the borate structure.

Share and Cite:

M. Pal, B. Roy and M. Pal, "Structural Characterization of Borate Glasses Containing Zinc and Manganese Oxides," Journal of Modern Physics, Vol. 2 No. 9, 2011, pp. 1062-1066. doi: 10.4236/jmp.2011.29129.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] A. Pan and A. Ghosh, “A New Family of Lead-Bismuthate Glass with a Large Transmitting Win-dow,” Journal of Non-Crystalline Solids, Vol. 271, No. 1-2, 2000, pp. 157-161. doi:10.1016/S0022-3093(00)00111-3
[2] ?. Jiri, K. Ladislav, M. Petr, M. Lionel, R. Bertrand and G. Ivan, “Structure and Properties of MoO3-Containing Zinc Borophosphate Glasses,” Journal of Non-Crystalline Solids, Vol. 355, No. 16-17, 2009, pp. 970-975. doi:10.1016/j.jnoncrysol.2009.04.017
[3] C. W. Adrian, “Borate Structures: Crystalline and Vi-treous,” Physics and Chemistry of Glasses—European Journal of Glass Science and Technology Part B, Vol. 51, No. 1, 2010, pp. 1-39.
[4] M. Pal, “Structure and Physical Properties of Sodium Antimony Germinate Glasses,” Journal of Materials Re-search, Vol. 11, No. 7, 1996, pp. 1831-1835. doi:10.1557/JMR.1996.0231
[5] W. L. Konijnendijk and J. M. Stevels, “Structure of Borate and Borosilicate Glasses,” In: L. D. Pye, V. D. Fréchette and N. J. Kreidl, Eds., Borate Glasses: Structure, Properties, Applications, Plenum Press, New York, 1978, p. 259.
[6] I. Kashif, H. Farouk, A. S. Aly and A. M. Sanad, “Diffe-rential Scanning Calorimetry and Infrared Study of Barium Borate Glass Containing Transition Elements,” Physics and Chemistry of Glasses, Vol. 32, No. 2, 1991, pp. 77-78.
[7] A. C. Hannon, D. I. Grimley, R. A. Hulme, A. C. Wright and R. N. Sinclair, “Boroxol Groups in Vitreous Boron Oxide: New Evidence from Neutron Diffraction and In-elastic Neutron Scattering Studies,” Journal of Non-Crystalline Solids, Vol. 177, No. 1, 1994, pp. 299-316. doi:10.1016/0022-3093(94)90544-4
[8] D. L. Griscom, “Borate Glass Structrure,” In: L. D. Pye, V. D. Fréchette and N. J. Kreidl, Eds., Borate Glasses: Structure, Properties, Applications, Plenum Press, New York, 1978, p. 11.
[9] C. Li and Q. Su, “Action of Co-Dopant in Electron- Trapping Materials: The Case of Sm3+ in Mn2+ Activated Zinc Borosilicate Glasses,’’ Applied Physics Letters, Vol. 85, No. 12, 2003, pp. 2190-2192. doi:10.1063/1.1797562
[10] J.-M. Wu and H.-L. Huang, “Microwave Properties of Zinc, Barium, and Lead Borosilicate Glasses,” Journal of Non-Crystalline Solids, Vol. 260, No. 1-2, 1999, pp. 116- 124. doi:10.1016/S0022-3093(99)00513-X
[11] L. D. Bogomolova and M. P. Glassova, “The Impurity Effects in Vanadate Semiconducting Glasses,” Journal of Non-Crystalline Solids, Vol. 37, No. 3, 1980, pp. 423-426. doi:10.1016/0022-3093(80)90079-4
[12] M. Pal, D. Chakravorty and A. Bhowmik, “Structural Study of Iron Borate Glasses Containing NiO and ZnO,” Journal of Materials Research, Vol. 13, No. 11, 1998, pp. 3287-3292. doi:10.1557/JMR.1998.0447
[13] L. Aleksandrov, R. Iordanova and Y. Dimitriev, “Glass Formation in the MoO3-La2O3-B2O3 System,” Physics and Chemistry of Glasses, Vol. 48, 2007, p. 242.
[14] R. M. Almedia and J. D. Mackenzie, “Vibrational Spectra and Structure of Fluorozirconate Glasses,” Journal of Chemical Physics, Vol. 74, No. 11, 1981, pp. 5954-6537. doi:10.1063/1.441033
[15] S. Sakka and K. Kamiya, “Structure of Alkali Germanate Glasses Studied by Spectroscopic Techniques,” Journal of Non-Crystalline Solids, Vol. 49, 1982, p. 103. doi:10.1016/0022-3093(82)90110-7
[16] P. Becker, “Thermal and Optical Properties of Glasses of the System Bi2O3 - B2O3,” Crystal Research and Tech-nology, Vol. 38, No. 1, 2003, pp. 74-82. doi:10.1002/crat.200310009
[17] A. H. Verhoef and H. W. den Hartog, “A Molecular Dy-namics Study of B2O3 Glass Using Different Interaction Potentials,” Journal of Non-Crystalline Solids, Vol. 146, 1992, pp. 267-278. doi:10.1016/S0022-3093(05)80501-0
[18] S. Ram, “Infrared Study of the Dynamics of Boroxol Rings in the Crystallization of BaFe12O19 Microcrystal in the Borate Glass,” Physical Review B, Vol. 51, No. 10, 1995, pp. 6280-6286. doi:10.1103/PhysRevB.51.6280
[19] N. M. Bobkova1 and S. A. Khot’ko1, “Zinc Oxide in Borate Glass-Forming Systems,” Glass and Ceramics, Vol. 62, No. 5-6, 2005, pp. 167-170. doi:10.1007/s10717-005-0064-7
[20] W. Soppe, J. Kleerebezem and H. W. den Hartog, “Raman Spectroscopy Study of (B2O3)1?x?y(Li2O)x(Li2Cl2)y and (B2O3)1?x?y(Li2O)x(Cs2O)y,” Journal of Non-Crys- talline Solids, Vol. 93, 1987, p. 142. doi:10.1016/S0022-3093(87)80034-0
[21] L. Edwards, M. Gouterman and X. V. Porphyrins, “Vapor Absorption Spectra and Stability: Phthalocyanines,” Journal of Molecular Spectroscopy, Vol. 33, No. 2, 1970, pp. 292-310. doi:10.1016/0022-2852(70)90040-8
[22] M. Pal, “Borate Based Spintronic Materials in Bulk Form above Room Temperature,” Journal of Surface Science and Technology, Vol. 21, No. 1-2, 2005, pp. 91-96.

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.