Numerical Analysis of the Effect of Temperature and External Optical Feedback Variation on the Output Characteristics of External Cavity Semiconductor Laser Based Fiber Bragg Gratings

DOI: 10.4236/oalib.1102131   PDF   HTML   XML   708 Downloads   1,092 Views   Citations

Abstract

The temperature and external optical feedback (OFB) effects on power characteristics of external cavity semiconductor laser model based fiber Bragg gratings (FBGs) are numerically analyzed. In this model, fiber Bragg grating (FBG) is used as a wavelength selective element to control the properties of the laser output by controlling the external OFB level. The study is performed by modifying output laser equations that are solved by considering the effects of ambient temperature (T) variations and external OFB. In this study, the temperature dependence (TD) of laser characteristics is calculated according to TD of laser parameters instead of using the well-known Pankove relationship. Results show that by increasing the external OFB level, the laser output power improves significantly. Also, results show that by changing the operating temperature 15℃ (from 15℃ to 30℃), there is no great impact on the output characteristics. The obtained results can provide an important idea for the practical fabrication for this type of lasers.

Share and Cite:

Hisham, H. (2015) Numerical Analysis of the Effect of Temperature and External Optical Feedback Variation on the Output Characteristics of External Cavity Semiconductor Laser Based Fiber Bragg Gratings. Open Access Library Journal, 2, 1-9. doi: 10.4236/oalib.1102131.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Hashimoto, J.I., Takagi, T., Kato, T., Sasaki, G., Shigehara, M., Murashima, K., Shiozaki, M. and Iwashima, T. (2003) Fiber-Bragg-Grating External Cavity Semiconductor Laser (FGL) Module for DWDM Transmission. Journal of Light-wave Technology, 21, 2002-2009.
http://dx.doi.org/10.1109/JLT.2003.815498
[2] Bhatt, S. and Jhaveri, S. (2013) A Review of Dense Wavelength Division Multiplexing and Next Generation Optical Internet. International Journal of Engineering Science and Innovative Technology, 2, 404-412.
[3] Tripathi, D.K., Singh, P., Shukla, N.K. and Dixit, H.K. (2014) Design and Performance Study of Triple-Band DWDM (160 Channel). International Journal of Applied Control, Electrical and Electronics Engineering, 2, 45-51.
[4] Hisham, H.K., Abas, A.F., Mahdiraji, G.A., Mahdi, M.A. and Mahamd Adikan, F.R. (2014) Linewidth Optimization in Fiber Grating Fabry-Perot Laser. Optical Engineering, 53, 1-8.
http://dx.doi.org/10.1117/1.OE.53.2.026107
[5] Timofeev, F.N., Simin, G.S., Shatalov, M.S., Bayvel, P., Wyatt, R., Lealman, I., Kashyap, R. and Gurevich, S.A. (2000) Experimental and Theoretical Study of High Temperature-Stability and Low-Chirp 1.55 μm Semiconductor Laser with an External Fiber Grating. Journal of Fiber and Integrated Optics, 19, 327-353.
http://dx.doi.org/10.1080/014680300300001699
[6] Anees, S.B., Shah, S.K. and Ali, A. (2014) Next Gen. Dense Wavelength Division Multiplexing. International Journal of Advanced Research in Computer Science and Software Engineering, 4, 1000-1008.
[7] Bharath, K.S. and Jayaraj, N. (2014) Network Planning and Engineering for Fiber Optic Transport Systems. International Journal of Innovative Research in Computer and Communication Engineering, 2, 4296-4301.
[8] Kapusta, E.W., Luerben, D. and Hudgings, J.A. (2006) Quantifying Optical Feedback into Semiconductor Laser via Thermal Profiling. IEEE Photonics Technology Letters, 18, 310-312.
http://dx.doi.org/10.1109/LPT.2005.861967
[9] Othonos, A. and Kalli, K. (1999) Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing. Artech House, Inc.
[10] Yu, H.G., Wang, Y., Xu, C.Q., Wojcik, J. and Mascher, P. (2005) Spectral Investigation of Multimode Fiber Bragg Grating Based External Cavity Semiconductor Lasers. IEEE Journal of Quantum Electronics, 41, 1492-1500.
http://dx.doi.org/10.1109/JQE.2005.857706
[11] Agrawal, G.P. and Dutta, N.K. (1986) Long-Wavelength Semiconductor Lasers. John Wiley & Sons, New York.
http://dx.doi.org/10.1007/978-94-011-6994-3
[12] Osmundsen, J.H. and Gade, N. (1985) Influence of Optical Feedback on Laser Frequency Spectrum and Threshold Conditions. IEEE Journal of Quantum Electronics, 19, 465-469.
[13] Ming, M. and Liu, K. (1996) Principles and Applications of Optical Communication. The McGraw-Hill, New York.
[14] Hisham, H.K., Abas, A.F., Mahdiraji, G.A., Mahdi, M.A. and Muhammad Noor, A.S. (2012) Relative Intensity Noise Reduction by Optimizing Fiber Grating Fabry-Perot Laser Parameters. IEEE Journal of Quantum Electronics, 48, 385-393.
http://dx.doi.org/10.1109/JQE.2011.2181489
[15] Hisham, H.K., Abas, A.F., Mahdiraji, G.A., Mahdi, M.A. and Muhammad Noor, A.S. (2012) Characterization of the Small-Signal Intensity Modulation for Single-Mode Fiber Grating Fabry-Perot Lasers. OPT Review, 19, 64-70.
http://dx.doi.org/10.1007/s10043-012-0014-x
[16] Hisham, H.K., Abas, A.F., Mahdiraji, G.A., Mahdi, M.A. and Muhammad Noor, A.S. (2012) Characterization of Phase Noise in a Single-Mode Fiber Grating Fabry-Perot Laser. Journal of Modern Optics, 59, 393-401.
http://dx.doi.org/10.1080/09500340.2011.629060
[17] Hisham, H.K., Mahdiraji, G.A., Abas, A.F., Mahdi, M.A. and Mahamd Adikan, F.R. (2012) Characterization of Turn-On Time Delay in a Fiber Grating Fabry-Perot Lasers. IEEE Photonics Journal, 4, 1662-1678.
http://dx.doi.org/10.1109/JPHOT.2012.2214207
[18] Hisham, H.K., Mahdiraji, G.A., Abas, A.F., Mahdi, M.A. and Mahamd Adikan, F.R. (2012) Characterization of Transient Response in Fiber Grating Fabry-Perot Lasers. IEEE Photonics Journal, in Press.
[19] Hisham, H.K., Abas, A.F., Mahdiraji, G.A., Mahdi, M.A. and Mahamd Adikan, F.R. (2013) Linewidth Characteristics of Un-Cooled Fiber Grating Fabry-Perot Laser Controlled by the External Optical Feedback. Optik, 124, 1763-1766.
http://dx.doi.org/10.1016/j.ijleo.2012.05.004
[20] Hisham, H.K., Abas, A.F., Mahdiraji, G.A., Mahdi, M.A. and Mahamd Adikan, F.R. (2012) Improving the Characteristics of the Modulation Response for Fiber Grating Fabry-Perot Lasers by Optimizing Model Parameters. Optics & Laser Technology, 44, 1698-1705.
http://dx.doi.org/10.1016/j.optlastec.2012.01.027
[21] Kallimani, K. and Mahony, J.O. (1998) Calculation of Optical Power Emitted from a Fiber Grating Laser. IEE Proceedings—Optoelectronics, 145, 319-324.
http://dx.doi.org/10.1049/ip-opt:19982464
[22] Othonos, A. and Kalli, K. (1999) Fiber Bragg Grating: Fundamentals and Applications in Telecommunications and Sensing. Artech House, Boston.
[23] Timofeev, F.N., Simin, G., Shatalov, M., Gurevich, S., Bayvel, P., Wyatt, R., Lealman, I. and Kashyap, R. (2000) Experimental and Theoretical Study of High Temperature-Stability and Low-Chirp 1.55 Micron Semiconductor Laser with an External Fiber Grating. Fiber and Integrated Optics, 19, 327-354.
http://dx.doi.org/10.1080/014680300300001699

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.