Contour Based Path Planning with B-Spline Trajectory Generation for Unmanned Aerial Vehicles (UAVs) over Hostile Terrain
Ee-May Kan, Meng-Hiot Lim, Swee-Ping Yeo, Jiun-Sien Ho, Zhenhai Shao
DOI: 10.4236/jilsa.2011.33014   PDF   HTML     6,127 Downloads   12,732 Views   Citations


This research focuses on trajectory generation algorithms that take into account the stealthiness of autonomous UAVs; generating stealthy paths through a region laden with enemy radars. The algorithm is employed to estimate the risk cost of the navigational space and generate an optimized path based on the user-specified threshold altitude value. Thus the generated path is represented with a set of low-radar risk waypoints being the coordinates of its control points. The radar-aware path planner is then approximated using cubic B-splines by considering the least radar risk to the destination. Simulated results are presented, illustrating the potential benefits of such algorithms.

Share and Cite:

E. Kan, M. Lim, S. Yeo, J. Ho and Z. Shao, "Contour Based Path Planning with B-Spline Trajectory Generation for Unmanned Aerial Vehicles (UAVs) over Hostile Terrain," Journal of Intelligent Learning Systems and Applications, Vol. 3 No. 3, 2011, pp. 122-130. doi: 10.4236/jilsa.2011.33014.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] A. Agarwal, M. H. Lim, M. J. Er and T. N. Nguyen, “Rectilinear Workspace Partitioning for Parallel Coverage Using Multiple UAVs,” Advanced Robotics, Vol. 21, No. 1, 2007, pp. 105-120.
[2] K. K. Lim, Y. S. Ong, M. H. Lim and A. Agarwal, “Hybrid Ant Colony Algorithm for Path Planning in Sparse Graphs,” Soft Computing Journal, Vol. 12, No. 10, 2008, pp. 981-994.
[3] C. W. Yeu, M. H. Lim, G. Huang, A. Agarwal and Y. S. Ong, “A New Machine Learning Paradigm for Terrain Reconstruction,” IEEE Geoscience and Remote Sensing Letters, Vol. 3, No. 3, 2006, pp. 981-994. doi:10.1109/LGRS.2006.873687
[4] L. Davis, “Warp Speed: Path Planning for Star Trek: Armada,” AAAI Spring Symposium, AAAI Press, Menlo Park, 2000.
[5] E. Frazzoli, M. Dahleh and E. Feron, “Real-Time Motion Planning for Agile Autonomous Vehicles,” Journal of Guidance, Control and Dynamics, Vol. 25, No. 1, 2002, pp. 116-129. doi:10.2514/2.4856
[6] N. H. Sleumer and N. Tschichold-Gürman, “Exact Cell Decomposition of Arrangements Used for Path Planning in Robotics,” Technical Reports 329, ETH Zürich, Institute of Theoretical Computer Science, 1999.
[7] J. C. Latombe, “Robot Motion Planning,” Kulwer Academic Publishers, Boston, 1991.
[8] T. Lozano-Pyrez and M. A. Wesley, “An Algorithm for Planning Collision-Free Paths among Polyhedral Obstacles,” Communications of the ACM, Vo1. 22, No. 10, 1979, pp. 565-570.
[9] M. Jun, “Path Planning for Unmanned Aerial Vehicles in Uncertain and Adversarial Environments,” In: S. Butenko, R. Murphey and P. Pardalos, Eds., Cooperative Control: Models, Applicarions and Algorithms, Kluwer, 2003, pp. 95-111.
[10] J. Hilgert, K. Hirsch, T. Bertram and M. Hiller, “Emergency Path Planning for AutonomousVehicles Using Elastic Band Theory,” Advanced Intelligent Mechatronics, Vol. 2, 2003, pp. 1390-1395.
[11] T. Sattel and T. Brandt, “Ground Vehicle Guidance Along Collision-Free Trajectories Using Elastic Bands,” Proceedings of 2005 American Control Conference, Portla, 2005, pp. 4991-4999.
[12] J. Hwang, R. C. Arkin and D. Kwon, “Mobile Robots at Your Fingertip: Bezier Curve On-Line Trajectory Generation for Supervisory Control,” Proceedings of Intelligent Robots and Systems (IROS 2003), Las Vegas, Vol. 2, 2003, pp. 1444-1449.
[13] J. Aleotti, S. Caselli and G. Maccherozzi, “Trajectory Reconstruction with NURBS Curves for Robot Programming by Demonstration,” Proceedings of Computational Intelligence in Robotics and Automation, Barcelona, 2005, pp. 73-78.
[14] K. B. Judd and T. W. McLain, “Spline Based Path Planning for Unmanned Air Vehicles,” AIAA Guidance, Navigation, and Control Conference and Exhibit, Montreal, 2001.
[15] E. P. Anderson, R. W. Beard, and T. W. McLain, “Real-Time Dynamic Trajectory Smoothing for Unmanned Air Vehicles,” IEEE Transactions on Control Systems Technology, Vol. 13, No. 3, 2005, pp. 471-477. doi:10.1109/TCST.2004.839555
[16] E. M. Kan, M. H. Lim, S. P. Yeo, S. H. Shao and J. S. Ho, “Radar Aware Path Planning for UAVs,” IEEE Symposium on Intelligent Systems and Applications, Trabzon, June 2009.
[17] E. M. Kan, S. P. Yeo, C. S.Tan, S. H. Shao and J. S. Ho, “Stealth Path Planning for UAVs in Hostile Radar Zones,” Proceedings of the 11th IASTED International Conference on Control and Applications, Cambridge, July 2009, pp. 54-60.
[18] F. W. Moore, “Radar Cross-Section Reduction via Route Planning and Intelligent Control,” IEEE Transactions on Control Systems Technology, Vol. 10, No. 5, 2002, pp. 696-700. doi:10.1109/TCST.2002.801879
[19] U. F. Knott, “Radar Cross Section Measurements,” Van Nostrand Reinhold, New York, 1993.
[20] L. Sevgi, “Complex Electromagnetic Problems and Numerical Simulation Approaches,” IEEE Press/John Wiley & Sons, New York, 2003.
[21] E. F. Knott, J. F. Shaeffer, and M. T. Tuley, “Radar Cross Section,” 2nd Edition, Artech House, Norwood, 1993, p. 231.
[22] M. Pachter, D. R. Jacques and J. M. Hebert, “Minimizing Radar Exposure in Air Vehicle Path Planning,” Proceedings of the 41st Israel Annual Conference on Aerospace Sciences, Tel-Aviv, February 2001.
[23] M. G. Cox, “The Numerical Evaluation of B-Splines,” IMA Journal of Applied Mathematics, Vol. 10, No. 2, 1972, pp. 134-149. doi:10.1093/imamat/10.2.134
[24] R. H. Bartels, J. C. Beatty and B. A. Barsky, “An Introduction to Splines for Use in Computer Graphics and Geometric Modeling,” Morgan Kaufmann Publishers, Massachusetts, 1987.
[25] Q. Cao, M. H. Lim, J. H. Li, Y. S. Ong and W. L. Ng, “A Context Switchable Fuzzy Inference Chip,” IEEE Transactions on Fuzzy Systems, Vol. 14, No. 4, 2006, pp. 552-567. doi:10.1109/TFUZZ.2006.876735
[26] M. H. Lim and Y Takefuji, “Implementing Fuzzy Rule-based systems on Silicon Chips,” IEEE Expert, Vol. 5, No. 1, 1990, pp. 31-45. doi:10.1109/64.50855
[27] R. Meuth, M. H. Lim, Y. S. Ong and D. C. Wunsh, “A Proposition on Memes and Meta-Memes in Computing for Higher-Order Learning,” Memetic Computing, Vol. 1, No. 2, 2009, pp. 85-100. doi:10.1007/s12293-009-0011-1
[28] M. H. Lim, Q. Cao, J. H. Li and W. L. Ng, “Evolvable Hardware Using Context Switchable Fuzzy Inference Processor,” IEEE Proceedings: Computers and Digital Techniques, Vol. 151, No. 4, 2004, pp. 301-311. doi:10.1049/ip-cdt:20040666

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.