Control of Threshold and Gain of Parametric Amplification in Magnetoactive III-V Piezoelectric Semiconductors
Bhajan Lal, P Aghamkar
DOI: 10.4236/jmp.2011.28090   PDF   HTML   XML   4,931 Downloads   9,428 Views   Citations


The effect of doping concentrations and a transverse external magnetostatic field on operational characteristics of parametric amplification of backward Stokes signal has been studied, using hydrodynamic model of semiconductors, in the far infrared regime. The model suggests three achievable resonance conditions: (i) lattice frequency and plasma frequency (ii) stokes frequency and electron-cyclotron frequency (iii) stokes frequency and hybrid (plasma and electron-cyclotron) frequency and these conditions have been utilised, on one hand, to substantially reduce the value of threshold intensity for onset of the parametric amplification and on the other hand, for switching of parametric large positive and negative gain coefficient (i.e. amplification and absorption). For example a strong transverse magnetostatic field 10.0 T with free carrier concentration 1.5 x 1019m-3 enhances the gain by a factor of 103 as in its absence. Results also suggest that a weakly piezoelectric III–V semiconductor duly illuminated by slightly off-resonant not-too-high-power pulsed lasers with pulse duration sufficiently larger than the acoustic phonon lifetime is one of promising hosts for parametric amplifier/frequency converter.

Share and Cite:

B. Lal and P. Aghamkar, "Control of Threshold and Gain of Parametric Amplification in Magnetoactive III-V Piezoelectric Semiconductors," Journal of Modern Physics, Vol. 2 No. 8, 2011, pp. 771-779. doi: 10.4236/jmp.2011.28090.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] R. L. Bayer, “Nonlinear Optics,” Academic Press, London, 1975, pp. 47-159.
[2] C. K. Hong and L. Mandel, “Theory of Parametric Frequency down Conversion of Light,” Physical Review A, Vol. 31, No. 4, 1985, pp. 2409-2418. doi: 10.1103/PhysRevA.31.2409
[3] Z. Y. Ou, L. J. Wang and L. Mandel, “Photon Amplification by Parametric Down Conversion,” Journal Optical Society America, Vol. B7, 1990, pp. 211-214.
[4] J. Zyss, I. Leodoun, J. Badan, J. L. Oudar, J. Etchepare, D. Hulin, A. Mingus and A. Antonnetii, “Amplification at emission paramétriques à l'échelle subpicoseconde dans un crystal organique: Application à la spectroscopy infra-rouge,” Revue de Physique Appliquée, Vol. 22, No. 10, 1987, pp. 1229-1238.
[5] D. A. B. Miller, “Bistable Optical Devices: Physics and Operating Characteristics of Nonlinear Optics in Semiconductors,” Laser Focus, Vol. 19, 1983, pp. 61-68.
[6] R. K. Jain, “Degenerate Four-Wave Mixing in Semiconductors: Application to Phase Conjugation and to Picoseconds Resolved Studies of Transient Carrier Dynamics,” Optics Engineering Bellingham, Vol. 21, 1982, pp. 199-218.
[7] S. D. Smith, “Lasers: Nonlinear Optics and Optical Computers,” Nature, Vol. 316, 1982, pp. 319-324. doi: 10.1038/316319a0
[8] P. A. Wolff, “Nonlinear Optics,” Academic Press, London, 1977, pp. 169-212.
[9] E. Garmire, “Resonant Optical Nonlinearities in Semiconductors,” IEEE Journal Quantum Electronics, Vol. 6, No. 6, 2000, pp. 1094-1110. doi: 10.1109/2944.902158
[10] R. W. Boyd, “Nonlinear Optics,” Academic Press, San Diego, 1992, Ch. 9, pp. .
[11] M. J. Connelly, “Semiconductor Optical Amplifiers,” Springer-Verlag, Boston, 2002.
[12] D. Apostolopoulos, K. Vyrsokinos, P. Zakynthinos, N. Pleros and H. Avramopoulos, “An SOA-MZI NRZ Wavelength Conversion Scheme with Enhanced 2R Regeneration Characteristics,” IEEE Photonics Technology Letter, Vol. 21, No. 19, 2009, pp. 1363-1365 doi. 10.1109/LPT.2009.2026725
[13] A. Hayat, Y. Elor, E. Small and M. Orenstein, “Phasematching in Semiconductor Nonlinear Optics by Linear Long-Period Gratings,” Applied Physics Letter, Vol. 92, No. 18, 2008, pp. 181110-181112. doi: 10.1063/1.2918013
[14] G. Lutz, “Semiconductor Radiation Detectors: Device Physics,” Springer, Berlin, 1999.
[15] Y. Fu and M. Willander, “Physics Models of Semiconductor Quantum Devices,” Springer, Berlin, 1999. doi: 10.1007/978-1-4615-5141-6
[16] M. B. Johnston, D. M. Whittaker, A. Dowd, A. G. Davies, E. H. Linfield, X. Li and D. A. Ritchie, “Generation of High-Power Terahertz Pulses in a Prism,” Optics Letters, Vol. 27, No. 21, 2002, pp. 1935-1937. doi: 10.1364/OL.27.001935
[17] G. Meinert, L. Banyai, P. Gartner and H. Haug, “Theory of THz Emission from Optically Excited Semiconductors in Crossed Electric and Magnetic Fields”, Physical Review B, Vol. 62, 2000, pp. 5003-5009. doi: 10.1103/PhysRevB.62.5003
[18] J. M. Makowska, K. J. Plucinski, A. Hruban, J. Ebothe, J. I. Fuks and I. V. Kityk, “Acoustically Induced Optical Second Harmonic Generation in InAs,” Semiconductor Science & Technology, Vol. 19, No. 11, 2004, pp. 1285- 1290. doi: 10.1088/0268-1242/19/11/013
[19] A. A. Bulgakov and O. V. Sharmkova, “Nonlinear Interaction of Waves in Semiconductor Plasma,” Journal Physics D: Applied Physics, Vol. 40, No. 9, 2007, pp. 5896-5901.doi: 10.1088/0022-3727/40/19/017
[20] B. Lal, P. Aghamkar, S. Kumar and M. K. Kashyap, “Second-Order Optical Susceptibility in Doped III-V Piezoelectric Semiconductors in the Presence of a Magnetostatic Field,” European Physics Journal D, Vol. 61, No. 3, 2011, pp. 717-724. doi: 10.1140/epjd/e2010-10455-9
[21] P. K. Kaw, “Parametric Excitation of Ultrasonic Waves In Piezoelectric Semiconductors,” Journal Applied Physics, Vol. 44, No. 4, 1973, pp. 1497-1498. doi: 10.1063/1.1662399
[22] D. L. Spears, “Brillouin Scattering Study of Propagating Acoustoelectric Domains in n-GaAs,” Physical Review B, Vol. 2, No. 6, 1970, pp. 1931-1951. doi: 10.1103/PhysRevB.2.1931
[23] D. L. Rode, “Semiconductors and Semimetals,” Academic, New York, 1975, Ch. 1, pp. .
[24] G. E. Stillman, C. M. Wolfe and J. O. Dimmock, “Hall Coefficient Factor for Polar Mode Scattering in n-Type GaAs,” Journal Phys Chem Solids, Vol. 31, No. 6, 1970, pp. 1199-1204. doi: 10.1016/0022-3697(70)90122-8
[25] E. D. Palik and J. K. Furdyna, “Infrared and Microwave Magnetoplasma Effects in Semiconductors,” Report Progress in Physics, Vol. 33, No. 3, 1970, pp. 1193-1322. doi: 10.1088/0034-4885/33/3/307
[26] J. M. Mayer, F. J. Bartoli and M. R. Kruer, “Optical heating in Semiconductors,” Physical Review B, Vol. 21, No.4, 1980, 1559-1568. doi: 10.1103/PhysRevB.21.1559

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.