Crystal Structural and Raman Vibrational Studies of
Bi1-xSb1-xTe2xO4 Solid Solution with 0 ≤ x ≤ 0.1

DOI: 10.4236/oalib.1101180   PDF        1,881 Downloads   2,241 Views   Citations


Synthesis and crystal structures are described for the Bi1-xSb1-xTe2xO4 solid solution with 0 ≤ x ≤ 0.1. It crystallizes in the monoclinic system, space group I2/c. Rietveld refinements of X-ray powder diffraction data indicate that the atomic positions are: Bi/Te(2)(4c), Sb/Te(1)(4d). The oxygen occupied two sites, 8f and 8b, respectively. The reliability factors are: Rp = 7.45%, Rwp = 10.6% and Rb = 3.88% for x = 0.1. The structure contains [(Sb/Te(1))O4]n layers formed by (Sb/Te(1))O6 octahedra sharing corners, which are parallel to (001) plan and held together by bismuth and tellurium atoms. The Raman study of this solid solution shows the bands which are assigned to O-Bi3+-O, O-Sb5+-O and connects (Bi/Te(2))O8-(Sb/Te(1))O6 vibration in the crystal.

Share and Cite:

Loubbidi, L. , Chagraoui, A. , Yakine, I. , Orayech, B. , Naji, M. , Igartua, J. and Tairi, A. (2014) Crystal Structural and Raman Vibrational Studies of
Bi1-xSb1-xTe2xO4 Solid Solution with 0 ≤ x ≤ 0.1. Open Access Library Journal, 1, 1-11. doi: 10.4236/oalib.1101180.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Keve, E.T. and Shapski, A.C. (1973) The Crystal Structure of Triclinic β-BiNbO4. Journal of Solid State Chemistry, 8, 159-165.
[2] Subramanian, M.A. and Calabrese, J.C. (1993) Crystal Structure of the Low Temperature Form of Bismuth Niobium Oxide [α-BiNbO4]. Materials Research Bulletin, 28, 523-529.
[3] Zhou, D., Wang, H., Yao, X., Wei, X.Y., Xiang, F. and Pang, L.X. (2007) Phase Transformation in BiNbO4 Ceramics. Applied Physics Letters, 90, Article ID: 172910.
[4] Zhou, D., Wang, H., Yao, X. and Pang, L.X. (2008) Dielectric Behavior and Cofiring with Silver of Monoclinic BiSbO4 Ceramic. Journal of the American Ceramic Society, 91, 1380-1383.
[5] Zhou, D., Wang, H., Yao, X. and Pang, L.X. (2008) Sintering Behavior, Phase Evolution, and Microwave Dielectric Properties of Bi(Sb1-xTax)O4 Ceramics. Journal of the American Ceramic Society, 91, 2228-2231.
[6] Lin, X.P., Huang, F.Q. and Zhang, K.L. (2006) A Novel Photocatalyst BiSbO4 for Degradation of Methylene Blue. Applied Catalysis A: General, 307, 257-262.
[7] Kennedy, B. (1994) X-Ray Powder Diffraction Study of BiSbO4. Powder Diffraction, 9, 164-167.
[8] Tairi, A., Champarnaud-Mesjard, J.C., Mercurio, D., et al. (1985) Sur Quelques Phases Originales du Système Bi-Sb-O. Revue De Chimie Minérale, 22, 699-710.
[9] Miyayama, M. and Yanagida, H. (1986) Oxygen Ion Conduction in γ-Bi2O3 Doped with Sb2O3. Journal of Materials Science, 21, 1233-1236.
[10] Gribchenkova, N.A., Steblevskii, A.V., Kolosov, E.N., Alikhanian, A.S. and Nipan, G.D. (2007) High-Temperature Mass Spectrometric Vaporization Study of the Bi-Sb-O System. Neorganicheskie Materialy, 43, 85-91.
[11] Chagraoui, A., Yakine, I., Tairi, A., Moussaoui, A., Talbi, M. and Naji, M. (2011) Glasses Formation, Characterization, and Crystal-Structure Determination in the Bi2O3-Sb2O3-TeO2 System Prepared in an Air. Journal of Materials Science, 46, 5439-5446.
[12] Enjalbert, R., Sorokina, S., Castro, A. and Galy, J. (1995) Comparison of Bismuth Stereochemistry in (BiO2)n and (Bi2O2)n Layers. Refinement of BiSbO4. Acta Chemica Scandinavica, 49, 813-819.
[13] Dowty, E. (2000) ATOMS for Windows: Version 5.1. Shape Software, Kingsport.
[14] Shannon, R.D. (1976) Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta Crystallographica, A32, 751-767.
[15] Rogers, D. and Skapski, A.C. (1964) Proceedings of the Chemical Society, 400-401.
[16] Alonso, J.A., Castro, A., Enjalbert, R., Galy, J. and Rasines, I. (1992) The Quadruple Chains of SbO6 Octahedra in Sb2Te2O9: An Example of Low Extent of Aggregation of Penta-Valent Antimony Polyhedra. Journal of the Chemical Society, Dalton Transactions, 2551.
[17] Champarnaud-Mesjard, J.C., Frit, B., Chagraoui, A. and Tairi, A. (1996) Crystal Structure of a New Cation-Ordered Fluorite-Related Phase: Bi2Te2WO10. Zeitschrift für Anorganische und Allgemeine Chemie, 622, 1907-1912.
[18] Champarnaud-Mesjard, J.C., Frit, B., Chagraoui, A. and Tairi, A. (1996) New Anion-Excess, Fluorite-Related, Ordered Structure: Bi2Te2W3O16. Journal of Solid State Chemistry, 127, 248-255.
[19] Chagraoui, A., Tairi, A. and Champarnaud-Mesjard, J.C. (2006) Crystal Structure of a New Stoichiometric Compound: Bi2Te5WO16 Deriving from Fluorite Type. Journal of Physics and Chemistry of Solids, 67, 2241-2252.
[20] Brown, J.D. (2002) The Chemical Bond in Inorganic Chemistry. Oxford University Press, Oxford.
[21] Brese, N.E. and O’Keeffe, M. (1991) Bond-Valence Parameters for Solids. Acta Crystallographica Section B: Structural Science, 47, 192-197.
[22] Cody, C.A., DiCarlo, L. and Darlington, R.K. (1979) Vibrational and Thermal Study of Antimony Oxides. Inorganic Chemistry, 18, 1572-1576.
[23] Mestl, G., Ruiz, P., Delmon, B. and Knözinger, H. (1994) Sb2O3/Sb2O4 in Reducing/Oxidizing Environments: An in Situ Raman Spectroscopy Study. The Journal of Physical Chemistry, 98, 11276-11282.
[24] Albrecht-Schmitt, T.E., Sykora, R.E., King, J.E. and Illies, A.J. (2004) Hydrothermal Synthesis, Structure, and Catalytic Properties of UO2Sb2O4. Journal of Solid State Chemistry, 177, 1717-1722.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.